\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Traveling wave solutions for Lotka-Volterra system re-visited

Abstract Related Papers Cited by
  • Using a new method of monotone iteration of a pair of smooth lower- and upper-solutions, the traveling wave solutions of the classical Lotka-Volterra system are shown to exist for a family of wave speeds. Such constructed upper and lower solution pair enables us to derive the explicit value of the minimal (critical) wave speed as well as the asymptotic decay/growth rates of the wave solutions at infinities. Furthermore, the traveling wave corresponding to each wave speed is unique up to a translation of the origin. The stability of the traveling wave solutions with non-critical wave speed is also studied by spectral analysis of a linearized operator in exponentially weighted Banach spaces.
    Mathematics Subject Classification: Primary 35B35, Secondary 91B18, 35K57, 35B40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. C. Alexander, R. A. Gardner and C. K. R. T. Jones, A topological invariant arising in the stability analysis of traveling waves, J. Reine Angew Math., 410 (1990), 167-212.

    [2]

    P. W. Bates and F. Chen, Spectral analysis and multidimensional stability of traveling waves for nonlocal Allen-Cahn equation, J. Math. Anal. Appl., 273 (2002), 45-57.doi: doi:10.1016/S0022-247X(02)00205-6.

    [3]

    A. Boumenir and V. Nguyen, Perron theorem in monotone iteration method for traveling waves in delayed reaction-diffusion equations, Journal of Differential Equations, 244 (2008), 1551-1570.doi: doi:10.1016/j.jde.2008.01.004.

    [4]

    E. Coddington and N. Levinson, "Theory of Ordinary Differential Equations," McGraw-Hill, 1955.

    [5]

    N. Fei and J. Carr, Existence of travelling waves with their minimal speed for a diffusing Lotka-Volterra system, Nonlinear Analysis: Real World Applications, 4 (2003), 503-524.doi: doi:10.1016/S1468-1218(02)00077-9.

    [6]

    D. Henry, "Geometric Theory of Semilinear Parabolic Equations," Lecture notes in Mathematics, 840, Springer-Verlag, 1981.

    [7]

    Y. Hosono, Travelling waves for a diffusive Lotka-Volterra competition model I: Singular perturbations, Discrete Continuous Dynamical Systems - B, 3 (2003), 79-95.

    [8]

    J. I. Kanel, On the wave front of a competition-diffusion system in popalation dynamics, Nonlinear Analysis: Theory, Methods & Applications, 65 (2006), 301-320.

    [9]

    J. I. Kanel and L. Zhou, Existence of wave front solutions and estimates of wave speed for a competition-diffusion system, Nonlinear Analysis: Theory, Methods & Applications, 27 (1996), 579-587.

    [10]

    Y. Kan-on, Note on propagation speed of travelling waves for a weakly coupled parabolic system, Nonlinear Analysis, 44 (2001), 239-246.doi: doi:10.1016/S0362-546X(99)00261-8.

    [11]

    Y. Kan-on, Note on propagation speed of travelling waves for a weakly coupled parabolic system, Nonlinear Analysis: Theory, Methods & Applications, 44 (2001), 239-246.

    [12]

    T. Kapitula, On the stability of Traveling waves in weighted $L^{\infty}$ spaces, Journal of Differential Equations, 112 (1994), 179-215.doi: doi:10.1006/jdeq.1994.1100.

    [13]

    G. A. Klaasen and W. Troy, The stability of traveling front solutions of a reaction-diffusion system, SIAM J. Appl-. Math, Vol., 41 (1981), 145-167.doi: doi:10.1137/0141011.

    [14]

    A. Kolmogorov, A. Petrovskii and N. Piskunov, A study of the equation of diffusion with increase in the quantity of matter, Bjul. Moskovskovo Gov. Iniv., 17 (1937), 1-72.

    [15]

    A. Leung, X. Hou and Y. Li, Exclusive traveling waves for competitive reaction-diffusion systems and their stabilities, J. Math. Anal. Appl., 338 (2008), 902-924.doi: doi:10.1016/j.jmaa.2007.05.066.

    [16]

    A. Leung, "Systems of Nonlinear Partial Differential Equations: Applications to Biology and Engineering," MIA, Kluwer, Boston, 1989.

    [17]

    A. Leung, "Nonlinear Systems of Partial Differential Equations: Applications to Life and Physical Sciences," World Scientific, New Jersey, Singapore, London, 2009.doi: doi:10.1142/9789814277709.

    [18]

    S. Ma, X. Zhao, Global asymptotic stability of minimal fronts in monostable lattice equations, Discrete Contin. Dyn. Syst., 21 (2008), 259-275.doi: doi:10.3934/dcds.2008.21.259.

    [19]

    C. V. Pao, "Nonlinear Parabolic and Elliptic Equations," Plenum Press, N. Y., 1992.

    [20]

    R. Pego and M. Weinstein, Eigenvalues and instabilities of solitary waves, Phil. Trans. R soc. London A, 340 (1992), 47-94.doi: doi:10.1098/rsta.1992.0055.

    [21]

    B. Sandstede, Stability of traveling waves, in "Handbook of Dynamical Systems II" (B Fiedler, ed.), North-Holland, (2002), 983-1055.doi: doi:10.1016/S1874-575X(02)80039-X.

    [22]

    D. Sattinger, On the stability of traveling waves of nonlinear parabolic systems, Advances in Mathematics, 22 (1976), 312-355.doi: doi:10.1016/0001-8708(76)90098-0.

    [23]

    M. M. Tang and P. C. Fife, Propagating fronts for competing species equations with diffusion, Arch. Rat. Mech. Anal., 73 (1980), 69-77.doi: doi:10.1007/BF00283257.

    [24]

    T. Gallay, Local stability of critical fronts in nonlinear parabolic partial differential equations, Nonlinearity, 7 (1994), 741-764.doi: doi:10.1088/0951-7715/7/3/003.

    [25]

    A. Volpert, V. Volpert and V. Volpert, "Traveling Wave Solutions of Parabolic Systems," Transl. Math. Monograhs, 140, Amer. Math. Soc., Providence, RI. 1994.

    [26]

    J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with delay, Journal of Dynamics and Differential Equations, 13 (2001), 651-687, and Erratum to traveling wave fronts of reaction-diffusion systems with delays, Journal of Dynamics and Differential Equations, 20 (2008), 531-533.

    [27]

    Y. Wu and Y. Li, Stability of travelling waves with noncritical speeds for double degenerate Fisher-type equations, Discrete Continuous Dynamical Systems - B, 10 (2008), 149-170.

    [28]

    Y. Wu, X. Xing and Q. Ye, Stability of travelling waves with algebraic decay for $n$-degree Fisher-type equations, Discrete and Continuous Dynamical Systems - B, 16 (2006), 47-66.

    [29]

    D. Xu and X. Q. Zhao, Bistable waves in an epidemic model, Journal of Dynamics and Differential Equations, 16 (2004), 679-707, and Erratum, Journal of Dynamics and Differential Equations, 17 (2005), 219-247.doi: doi:10.1007/s10884-005-6294-0.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(93) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return