January  2011, 15(1): 293-308. doi: 10.3934/dcdsb.2011.15.293

Analysis of a delayed free boundary problem for tumor growth

1. 

Department of Mathematics, Zhaoqing University, Zhaoqing, 526061, China

Received  December 2009 Revised  February 2010 Published  October 2010

In this paper we study a delayed free boundary problem for the growth of tumors. The establishment of the model is based on the diffusion of nutrient and mass conservation for the two process proliferation and apoptosis(cell death due to aging). It is assumed the process of proliferation is delayed compared to apoptosis. By $L^p$ theory of parabolic equations and the Banach fixed point theorem, we prove the existence and uniqueness of a local solutions and apply the continuation method to get the existence and uniqueness of a global solution. We also study the asymptotic behavior of the solution, and prove that in the case $c$ is sufficiently small, the volume of the tumor cannot expand unlimitedly. It will either disappear or evolve to a dormant state as $t\rightarrow\infty.$
Citation: Shihe Xu. Analysis of a delayed free boundary problem for tumor growth. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 293-308. doi: 10.3934/dcdsb.2011.15.293
References:
[1]

M. Bodnar, U. Forys, Time delay in necrotic core formation,, Math. Biosci. Eng., 2 (2005), 461.   Google Scholar

[2]

H. Byrne, The effect of time delays on the dynamics of avascular tumor growth,, Math. Biosci., 144 (1997), 83.  doi: doi:10.1016/S0025-5564(97)00023-0.  Google Scholar

[3]

H. Byrne and M. Chaplain, Growth of nonnecrotic tumors in the presence and absence of inhibitors,, Math. Biosci., 130 (1995), 151.  doi: doi:10.1016/0025-5564(94)00117-3.  Google Scholar

[4]

H. Byrne and M. Chaplain, Growth of necrotic tumors in the presence and absence of inhibitors,, Math. Biosci., 135 (1996), 187.  doi: doi:10.1016/0025-5564(96)00023-5.  Google Scholar

[5]

S. Cui, Analysis of a mathematical model for the growth of tumors under the action of external inhibitors,, J. Math. Biol., 44 (2002), 395.  doi: doi:10.1007/s002850100130.  Google Scholar

[6]

S. Cui and A. Friedman, Analysis of a mathematical model of the effact of inhibitors on the growth of tumors,, Math. Biosci., 164 (2000), 103.  doi: doi:10.1016/S0025-5564(99)00063-2.  Google Scholar

[7]

S. Cui, Analysis of a free boundary problem modeling tumor growth,, Acta. Math. Sinica., 21 (2005), 1071.  doi: doi:10.1007/s10114-004-0483-3.  Google Scholar

[8]

S. Cui and S. Xu, Analysis of mathematical models for the growth of tumors with time delays in cell proliferation,, J. Math. Anal. Appl., 336 (2007), 523.  doi: doi:10.1016/j.jmaa.2007.02.047.  Google Scholar

[9]

M. Dorie, R. Kallman, D. Rapacchietta and et al, Migration and internalization of cells and polystrene microspheres in tumor cell sphereoids,, Exp. Cell Res., 141 (1982), 201.  doi: doi:10.1016/0014-4827(82)90082-9.  Google Scholar

[10]

U. Forys and M. Bodnar, Time delays in proliferation process for solid avascular tumour,, Math. Comput. Modelling, 37 (2003), 1201.  doi: doi:10.1016/S0895-7177(03)80019-5.  Google Scholar

[11]

U. Forys and M. Kolev, Time delays in proliferation and apoptosis for solid avascular tumour,, Mathematical Modelling of Population Dynamics, 63 (2004), 187.   Google Scholar

[12]

A. Friedman and F. Reitich, Analysis of a mathematical model for the growth of tumors,, J. Math. Biol., 38 (1999), 262.  doi: doi:10.1007/s002850050149.  Google Scholar

[13]

H. Greenspan, Models for the growth of solid tumor by diffusion,, Stud. Appl. Math., 51 (1972), 317.   Google Scholar

[14]

H. Greenspan, On the growth and stability of cell cultures and solid tumors,, J. Theor. Biol., 56 (1976), 229.  doi: doi:10.1016/S0022-5193(76)80054-9.  Google Scholar

[15]

J. Hale, "Theory of Functional Differential Equations,", Springer-Verlag, (1977).   Google Scholar

[16]

M. J. Piotrowska, Hopf bifurcation in a solid asascular tumor growth model with two discrete delays,, Math. and Compu. Modeling, 47 (2008), 597.  doi: doi:10.1016/j.mcm.2007.02.030.  Google Scholar

[17]

R. R. Sarkar and S. Banerjee, A time delay model for control of malignant tumor growth,, National Conference on Nonlinear Systems and Dynamics, (2006), 1.   Google Scholar

[18]

K. Thompson and H. Byrne, Modelling the internalisation of labelled cells in tumor spheroids,, Bull. Math. Biol., 61 (1999), 601.  doi: doi:10.1006/bulm.1999.0089.  Google Scholar

[19]

J. Ward and J. King, Mathematical modelling of avascular-tumor growth II: Modelling growth saturation,, IMA J. Math. Appl. Med. Biol., 15 (1998), 1.   Google Scholar

[20]

X. Wei and S. Cui, Existence and uniqueniss of global solutions of a free boundary problem modeling tumor growth (in chinese)., Math. Acta. Scientia., 26A (2006), 1.   Google Scholar

[21]

S. Xu, Hopf bifurcation of a free boundary problem modeling tumor growth with two time delays,, Chaos, 41 (2009), 2491.  doi: doi:10.1016/j.chaos.2008.09.029.  Google Scholar

[22]

S. Xu, Hopf bifurcation of tumor growth under direct effect of inhibitors with two time delays,, Inter. J. Appl. Math. Comput., 1 (2009), 97.   Google Scholar

[23]

S. Xu, Analysis of tumor growth under direct effect of inhibitors with time delays in proliferation,, Nonlinear Anal., 11 (2010), 401.  doi: doi:10.1016/j.nonrwa.2008.11.002.  Google Scholar

show all references

References:
[1]

M. Bodnar, U. Forys, Time delay in necrotic core formation,, Math. Biosci. Eng., 2 (2005), 461.   Google Scholar

[2]

H. Byrne, The effect of time delays on the dynamics of avascular tumor growth,, Math. Biosci., 144 (1997), 83.  doi: doi:10.1016/S0025-5564(97)00023-0.  Google Scholar

[3]

H. Byrne and M. Chaplain, Growth of nonnecrotic tumors in the presence and absence of inhibitors,, Math. Biosci., 130 (1995), 151.  doi: doi:10.1016/0025-5564(94)00117-3.  Google Scholar

[4]

H. Byrne and M. Chaplain, Growth of necrotic tumors in the presence and absence of inhibitors,, Math. Biosci., 135 (1996), 187.  doi: doi:10.1016/0025-5564(96)00023-5.  Google Scholar

[5]

S. Cui, Analysis of a mathematical model for the growth of tumors under the action of external inhibitors,, J. Math. Biol., 44 (2002), 395.  doi: doi:10.1007/s002850100130.  Google Scholar

[6]

S. Cui and A. Friedman, Analysis of a mathematical model of the effact of inhibitors on the growth of tumors,, Math. Biosci., 164 (2000), 103.  doi: doi:10.1016/S0025-5564(99)00063-2.  Google Scholar

[7]

S. Cui, Analysis of a free boundary problem modeling tumor growth,, Acta. Math. Sinica., 21 (2005), 1071.  doi: doi:10.1007/s10114-004-0483-3.  Google Scholar

[8]

S. Cui and S. Xu, Analysis of mathematical models for the growth of tumors with time delays in cell proliferation,, J. Math. Anal. Appl., 336 (2007), 523.  doi: doi:10.1016/j.jmaa.2007.02.047.  Google Scholar

[9]

M. Dorie, R. Kallman, D. Rapacchietta and et al, Migration and internalization of cells and polystrene microspheres in tumor cell sphereoids,, Exp. Cell Res., 141 (1982), 201.  doi: doi:10.1016/0014-4827(82)90082-9.  Google Scholar

[10]

U. Forys and M. Bodnar, Time delays in proliferation process for solid avascular tumour,, Math. Comput. Modelling, 37 (2003), 1201.  doi: doi:10.1016/S0895-7177(03)80019-5.  Google Scholar

[11]

U. Forys and M. Kolev, Time delays in proliferation and apoptosis for solid avascular tumour,, Mathematical Modelling of Population Dynamics, 63 (2004), 187.   Google Scholar

[12]

A. Friedman and F. Reitich, Analysis of a mathematical model for the growth of tumors,, J. Math. Biol., 38 (1999), 262.  doi: doi:10.1007/s002850050149.  Google Scholar

[13]

H. Greenspan, Models for the growth of solid tumor by diffusion,, Stud. Appl. Math., 51 (1972), 317.   Google Scholar

[14]

H. Greenspan, On the growth and stability of cell cultures and solid tumors,, J. Theor. Biol., 56 (1976), 229.  doi: doi:10.1016/S0022-5193(76)80054-9.  Google Scholar

[15]

J. Hale, "Theory of Functional Differential Equations,", Springer-Verlag, (1977).   Google Scholar

[16]

M. J. Piotrowska, Hopf bifurcation in a solid asascular tumor growth model with two discrete delays,, Math. and Compu. Modeling, 47 (2008), 597.  doi: doi:10.1016/j.mcm.2007.02.030.  Google Scholar

[17]

R. R. Sarkar and S. Banerjee, A time delay model for control of malignant tumor growth,, National Conference on Nonlinear Systems and Dynamics, (2006), 1.   Google Scholar

[18]

K. Thompson and H. Byrne, Modelling the internalisation of labelled cells in tumor spheroids,, Bull. Math. Biol., 61 (1999), 601.  doi: doi:10.1006/bulm.1999.0089.  Google Scholar

[19]

J. Ward and J. King, Mathematical modelling of avascular-tumor growth II: Modelling growth saturation,, IMA J. Math. Appl. Med. Biol., 15 (1998), 1.   Google Scholar

[20]

X. Wei and S. Cui, Existence and uniqueniss of global solutions of a free boundary problem modeling tumor growth (in chinese)., Math. Acta. Scientia., 26A (2006), 1.   Google Scholar

[21]

S. Xu, Hopf bifurcation of a free boundary problem modeling tumor growth with two time delays,, Chaos, 41 (2009), 2491.  doi: doi:10.1016/j.chaos.2008.09.029.  Google Scholar

[22]

S. Xu, Hopf bifurcation of tumor growth under direct effect of inhibitors with two time delays,, Inter. J. Appl. Math. Comput., 1 (2009), 97.   Google Scholar

[23]

S. Xu, Analysis of tumor growth under direct effect of inhibitors with time delays in proliferation,, Nonlinear Anal., 11 (2010), 401.  doi: doi:10.1016/j.nonrwa.2008.11.002.  Google Scholar

[1]

Junde Wu, Shangbin Cui. Asymptotic behavior of solutions of a free boundary problem modelling the growth of tumors with Stokes equations. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 625-651. doi: 10.3934/dcds.2009.24.625

[2]

Chunpeng Wang. Boundary behavior and asymptotic behavior of solutions to a class of parabolic equations with boundary degeneracy. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1041-1060. doi: 10.3934/dcds.2016.36.1041

[3]

Tingting Liu, Qiaozhen Ma. Time-dependent asymptotic behavior of the solution for plate equations with linear memory. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4595-4616. doi: 10.3934/dcdsb.2018178

[4]

P. R. Zingano. Asymptotic behavior of the $L^1$ norm of solutions to nonlinear parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (1) : 151-159. doi: 10.3934/cpaa.2004.3.151

[5]

Kosuke Ono. Global existence and asymptotic behavior of small solutions for semilinear dissipative wave equations. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 651-662. doi: 10.3934/dcds.2003.9.651

[6]

Zhijun Zhang. Optimal global asymptotic behavior of the solution to a singular monge-ampère equation. Communications on Pure & Applied Analysis, 2020, 19 (2) : 1129-1145. doi: 10.3934/cpaa.2020053

[7]

Fujun Zhou, Junde Wu, Shangbin Cui. Existence and asymptotic behavior of solutions to a moving boundary problem modeling the growth of multi-layer tumors. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1669-1688. doi: 10.3934/cpaa.2009.8.1669

[8]

Bernard Brighi, S. Guesmia. Asymptotic behavior of solution of hyperbolic problems on a cylindrical domain. Conference Publications, 2007, 2007 (Special) : 160-169. doi: 10.3934/proc.2007.2007.160

[9]

Honglv Ma, Jin Zhang, Chengkui Zhong. Global existence and asymptotic behavior of global smooth solutions to the Kirchhoff equations with strong nonlinear damping. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4721-4737. doi: 10.3934/dcdsb.2019027

[10]

Junde Wu, Shangbin Cui. Asymptotic behavior of solutions for parabolic differential equations with invariance and applications to a free boundary problem modeling tumor growth. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 737-765. doi: 10.3934/dcds.2010.26.737

[11]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[12]

Minkyu Kwak, Kyong Yu. The asymptotic behavior of solutions of a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 1996, 2 (4) : 483-496. doi: 10.3934/dcds.1996.2.483

[13]

Shota Sato, Eiji Yanagida. Asymptotic behavior of singular solutions for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 4027-4043. doi: 10.3934/dcds.2012.32.4027

[14]

Bo-Qing Dong, Juan Song. Global regularity and asymptotic behavior of modified Navier-Stokes equations with fractional dissipation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 57-79. doi: 10.3934/dcds.2012.32.57

[15]

Belkacem Said-Houari, Radouane Rahali. Asymptotic behavior of the solution to the Cauchy problem for the Timoshenko system in thermoelasticity of type III. Evolution Equations & Control Theory, 2013, 2 (2) : 423-440. doi: 10.3934/eect.2013.2.423

[16]

Ling Mi. Asymptotic behavior for the unique positive solution to a singular elliptic problem. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1053-1072. doi: 10.3934/cpaa.2015.14.1053

[17]

Bhargav Kumar Kakumani, Suman Kumar Tumuluri. Asymptotic behavior of the solution of a diffusion equation with nonlocal boundary conditions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 407-419. doi: 10.3934/dcdsb.2017019

[18]

Georgia Karali, Takashi Suzuki, Yoshio Yamada. Global-in-time behavior of the solution to a Gierer-Meinhardt system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2885-2900. doi: 10.3934/dcds.2013.33.2885

[19]

Jingyu Li. Asymptotic behavior of solutions to elliptic equations in a coated body. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1251-1267. doi: 10.3934/cpaa.2009.8.1251

[20]

Lie Zheng. Asymptotic behavior of solutions to the nonlinear breakage equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 463-473. doi: 10.3934/cpaa.2005.4.463

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]