January  2011, 15(1): 309-323. doi: 10.3934/dcdsb.2011.15.309

Traveling waves for models of phase transitions of solids driven by configurational forces

1. 

Faculty of Mathematics, Kyushu University, Fukuoka 819-0395, Japan

2. 

Basque Center for Applied Mathematics, Building 500, Bizkaia Technology Park, E-48160 Derio, Spain

Received  December 2009 Revised  April 2010 Published  October 2010

This article is concerned with the existence of traveling wave solutions, including standing waves, to some models based on configurational forces, describing respectively the diffusionless phase transitions of solid materials, e.g., Steel, and phase transitions due to interface motion by interface diffusion, e.g., Sintering. These models were proposed by Alber and Zhu in [3]. We consider both the order-parameter-conserved case and the non-conserved one, under suitable assumptions. Also we compare our results with the corresponding ones for the Allen-Cahn and the Cahn-Hilliard equations coupled with linear elasticity, which are models for diffusion-dominated phase transitions in elastic solids.
Citation: Shuichi Kawashima, Peicheng Zhu. Traveling waves for models of phase transitions of solids driven by configurational forces. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 309-323. doi: 10.3934/dcdsb.2011.15.309
References:
[1]

R. Abeyaratne and J. Knowles, On the driving traction acting on a surface of strain discontinuity in a continuum, J. Mech. Phys. Solids, 38 (1990), 345-360. doi: doi:10.1016/0022-5096(90)90003-M.

[2]

H. D. Alber, Evolving microstructure and homogenization, Continuum. Mech. Thermodyn., 12 (2000), 235-287. doi: doi:10.1007/s001610050137.

[3]

H. D. Alber and P. Zhu, Evolution of phase boundaries by configurational forces, Archive Rat. Mech. Anal., 185 (2007), 235-286. doi: doi:10.1007/s00205-007-0054-8.

[4]

H. D. Alber and P. Zhu, Solutions to a model with nonuniformly parabolic terms for phase evolution driven by configurational forces, SIAM J. Appl. Math., 66 (2006), 680-699. doi: doi:10.1137/050629951.

[5]

H. D. Alber and P. Zhu, Solutions to a model for interface motion by interface diffusion, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 923-955. doi: doi:10.1017/S0308210507000170.

[6]

H. D. Alber and P. Zhu, Interface motion by interface diffusion driven by bulk energy: Justification of a diffusive interface model, preprint, accepted for publication in Conti. Mech. Thermodyna, 2010.

[7]

S. Allen and J. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Met., 27 (1979), 1084-1095. doi: doi:10.1016/0001-6160(79)90196-2.

[8]

D. Aronson and H. Weiberger, Multidimensional nonlinear diffusions arising in population genetics, Adv. Math., 30 (1978), 33-76. doi: doi:10.1016/0001-8708(78)90130-5.

[9]

H. Berestycki and F. Hamel, Generalized travelling waves for reaction-diffusion equations, in "Perspectives in Nonlinear Partial Differential Equations," Contemp. Mathematics, 446, Amer. Math. Soc., Providence, RI, (2007), 101-123.

[10]

T. Blesgen and U. Weikard, Multi-component Allen-Cahn equation for elastically stressed solids, Electronic J. Diff. Eqs., 2005 (2005), 1-17.

[11]

J. Cahn, Free energy of a nonuniform system. II. Thermodynamic basis, J. Chem. Phys., 30 (1959), 1121-1124. doi: doi:10.1063/1.1730145.

[12]

J. Cahn and J. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys., 28 (1959), 258-267. doi: doi:10.1063/1.1744102.

[13]

J. Cahn and J. Hilliard, Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid, J. Chem. Phys., 31 (1959), 688-699. doi: doi:10.1063/1.1730447.

[14]

J. Cahn and J. Taylor, Surface motion by surface diffusion, Acta Metall. Mater., 42 (1994), 1045-1063. doi: doi:10.1016/0956-7151(94)90123-6.

[15]

X. Chen, Generation and propagation of interfaces for reaction-diffusion equations, J. Diff. Eq., 96 (1992), 116-141.

[16]

P. Fife, "Mathematical Aspects of Reacting and Diffusing Systems," Springer Verlag, 1979.

[17]

P. Fife and J. McLeod, The approach of solutions of nonlinear diffusion equations to traveling front solutions, Arch. Rati. Mech. Anal., 65 (1977), 335-361. doi: doi:10.1007/BF00250432.

[18]

M. Gurtin, "Configurational Forces as Basic Concepts of Continuum Physics," Springer Verlag, New York, 2000.

[19]

H. Garcke, On the Cahn-Hilliard system with elasticity, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 307-331. doi: doi:10.1017/S0308210500002419.

[20]

E. Hornbogen and H. Warlimont, "Metallkunde," 4th edition, Springer-Verlag, 2001.

[21]

Y. Kanel, On the stabilization of solutions of the Cauchy problem for equations arising in the theory of combustion, Mat. Sbornik, 59 (1962), 245-288.

[22]

W. Mullins, Theory of thermal grooving, J. Appl. Phys., 28 (1957), 333-339. doi: doi:10.1063/1.1722742.

[23]

H. Ninomiya and M. Taniguchi, Existence and global stability of traveling curved fronts in the Allen-Cahn equations, J. Diff. Eq., 213 (2005), 204-233.

[24]

H. Ninomiya and M. Taniguchi, Global stability of traveling curved fronts in the Allen-Cahn equations, Disc. Conti. Dyna. Syst., 15 (2006), 819-832. doi: doi:10.3934/dcds.2006.15.819.

[25]

R. Pego, Front migration in the nonlinear Cahn-Hilliard equation, Proc. R. Soc. Lond. Sect. A, 422 (1989), 261-278. doi: doi:10.1098/rspa.1989.0027.

[26]

J. Smoller, "Shock Waves and Reaction-Diffusion Equations," Springer Verlag, New York, 1983.

[27]

M. Taniguchi, Traveling fronts of pyramidal shapes in the Allen-Cahn equations, SIAM J. Math. Anal., 39 (2007), 319-344. doi: doi:10.1137/060661788.

[28]

J. Taylor and J. Cahn, Linking anisotropic sharp and diffuse surface motion laws via gradient flows, J. Stat. Phys., 77 (1994), 183-197. doi: doi:10.1007/BF02186838.

[29]

A. Volpert, V. Volpert and V. Volpert, "Traveling Wave Solutions of Parabolic Systems," Translations of Mathematical Monographs, 140, American Mathematical Society, Providence, Rhode Island, 1994.

show all references

References:
[1]

R. Abeyaratne and J. Knowles, On the driving traction acting on a surface of strain discontinuity in a continuum, J. Mech. Phys. Solids, 38 (1990), 345-360. doi: doi:10.1016/0022-5096(90)90003-M.

[2]

H. D. Alber, Evolving microstructure and homogenization, Continuum. Mech. Thermodyn., 12 (2000), 235-287. doi: doi:10.1007/s001610050137.

[3]

H. D. Alber and P. Zhu, Evolution of phase boundaries by configurational forces, Archive Rat. Mech. Anal., 185 (2007), 235-286. doi: doi:10.1007/s00205-007-0054-8.

[4]

H. D. Alber and P. Zhu, Solutions to a model with nonuniformly parabolic terms for phase evolution driven by configurational forces, SIAM J. Appl. Math., 66 (2006), 680-699. doi: doi:10.1137/050629951.

[5]

H. D. Alber and P. Zhu, Solutions to a model for interface motion by interface diffusion, Proc. Roy. Soc. Edinburgh Sect. A, 138 (2008), 923-955. doi: doi:10.1017/S0308210507000170.

[6]

H. D. Alber and P. Zhu, Interface motion by interface diffusion driven by bulk energy: Justification of a diffusive interface model, preprint, accepted for publication in Conti. Mech. Thermodyna, 2010.

[7]

S. Allen and J. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Met., 27 (1979), 1084-1095. doi: doi:10.1016/0001-6160(79)90196-2.

[8]

D. Aronson and H. Weiberger, Multidimensional nonlinear diffusions arising in population genetics, Adv. Math., 30 (1978), 33-76. doi: doi:10.1016/0001-8708(78)90130-5.

[9]

H. Berestycki and F. Hamel, Generalized travelling waves for reaction-diffusion equations, in "Perspectives in Nonlinear Partial Differential Equations," Contemp. Mathematics, 446, Amer. Math. Soc., Providence, RI, (2007), 101-123.

[10]

T. Blesgen and U. Weikard, Multi-component Allen-Cahn equation for elastically stressed solids, Electronic J. Diff. Eqs., 2005 (2005), 1-17.

[11]

J. Cahn, Free energy of a nonuniform system. II. Thermodynamic basis, J. Chem. Phys., 30 (1959), 1121-1124. doi: doi:10.1063/1.1730145.

[12]

J. Cahn and J. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys., 28 (1959), 258-267. doi: doi:10.1063/1.1744102.

[13]

J. Cahn and J. Hilliard, Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid, J. Chem. Phys., 31 (1959), 688-699. doi: doi:10.1063/1.1730447.

[14]

J. Cahn and J. Taylor, Surface motion by surface diffusion, Acta Metall. Mater., 42 (1994), 1045-1063. doi: doi:10.1016/0956-7151(94)90123-6.

[15]

X. Chen, Generation and propagation of interfaces for reaction-diffusion equations, J. Diff. Eq., 96 (1992), 116-141.

[16]

P. Fife, "Mathematical Aspects of Reacting and Diffusing Systems," Springer Verlag, 1979.

[17]

P. Fife and J. McLeod, The approach of solutions of nonlinear diffusion equations to traveling front solutions, Arch. Rati. Mech. Anal., 65 (1977), 335-361. doi: doi:10.1007/BF00250432.

[18]

M. Gurtin, "Configurational Forces as Basic Concepts of Continuum Physics," Springer Verlag, New York, 2000.

[19]

H. Garcke, On the Cahn-Hilliard system with elasticity, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 307-331. doi: doi:10.1017/S0308210500002419.

[20]

E. Hornbogen and H. Warlimont, "Metallkunde," 4th edition, Springer-Verlag, 2001.

[21]

Y. Kanel, On the stabilization of solutions of the Cauchy problem for equations arising in the theory of combustion, Mat. Sbornik, 59 (1962), 245-288.

[22]

W. Mullins, Theory of thermal grooving, J. Appl. Phys., 28 (1957), 333-339. doi: doi:10.1063/1.1722742.

[23]

H. Ninomiya and M. Taniguchi, Existence and global stability of traveling curved fronts in the Allen-Cahn equations, J. Diff. Eq., 213 (2005), 204-233.

[24]

H. Ninomiya and M. Taniguchi, Global stability of traveling curved fronts in the Allen-Cahn equations, Disc. Conti. Dyna. Syst., 15 (2006), 819-832. doi: doi:10.3934/dcds.2006.15.819.

[25]

R. Pego, Front migration in the nonlinear Cahn-Hilliard equation, Proc. R. Soc. Lond. Sect. A, 422 (1989), 261-278. doi: doi:10.1098/rspa.1989.0027.

[26]

J. Smoller, "Shock Waves and Reaction-Diffusion Equations," Springer Verlag, New York, 1983.

[27]

M. Taniguchi, Traveling fronts of pyramidal shapes in the Allen-Cahn equations, SIAM J. Math. Anal., 39 (2007), 319-344. doi: doi:10.1137/060661788.

[28]

J. Taylor and J. Cahn, Linking anisotropic sharp and diffuse surface motion laws via gradient flows, J. Stat. Phys., 77 (1994), 183-197. doi: doi:10.1007/BF02186838.

[29]

A. Volpert, V. Volpert and V. Volpert, "Traveling Wave Solutions of Parabolic Systems," Translations of Mathematical Monographs, 140, American Mathematical Society, Providence, Rhode Island, 1994.

[1]

Paola Goatin. Traffic flow models with phase transitions on road networks. Networks and Heterogeneous Media, 2009, 4 (2) : 287-301. doi: 10.3934/nhm.2009.4.287

[2]

Johanna Ridder, Wen Shen. Traveling waves for nonlocal models of traffic flow. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4001-4040. doi: 10.3934/dcds.2019161

[3]

Chiun-Chuan Chen, Hung-Yu Chien, Chih-Chiang Huang. A variational approach to three-phase traveling waves for a gradient system. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4737-4765. doi: 10.3934/dcds.2021055

[4]

Honghu Liu. Phase transitions of a phase field model. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 883-894. doi: 10.3934/dcdsb.2011.16.883

[5]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure and Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[6]

Tong Li, Jeungeun Park. Stability of traveling waves of models for image processing with non-convex nonlinearity. Communications on Pure and Applied Analysis, 2018, 17 (3) : 959-985. doi: 10.3934/cpaa.2018047

[7]

Shaoqiang Tang, Huijiang Zhao. Stability of Suliciu model for phase transitions. Communications on Pure and Applied Analysis, 2004, 3 (4) : 545-556. doi: 10.3934/cpaa.2004.3.545

[8]

Tatyana S. Turova. Structural phase transitions in neural networks. Mathematical Biosciences & Engineering, 2014, 11 (1) : 139-148. doi: 10.3934/mbe.2014.11.139

[9]

Wendi Wang. Epidemic models with nonlinear infection forces. Mathematical Biosciences & Engineering, 2006, 3 (1) : 267-279. doi: 10.3934/mbe.2006.3.267

[10]

Xiao-Biao Lin, Stephen Schecter. Traveling waves and shock waves. Discrete and Continuous Dynamical Systems, 2004, 10 (4) : i-ii. doi: 10.3934/dcds.2004.10.4i

[11]

Miles H. Wheeler. On stratified water waves with critical layers and Coriolis forces. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4747-4770. doi: 10.3934/dcds.2019193

[12]

Steffen Arnrich. Modelling phase transitions via Young measures. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 29-48. doi: 10.3934/dcdss.2012.5.29

[13]

Pavel Drábek, Stephen Robinson. Continua of local minimizers in a quasilinear model of phase transitions. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 163-172. doi: 10.3934/dcds.2013.33.163

[14]

Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Isotropic-nematic phase transitions in liquid crystals. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 565-579. doi: 10.3934/dcdss.2011.4.565

[15]

Nicolai T. A. Haydn. Phase transitions in one-dimensional subshifts. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1965-1973. doi: 10.3934/dcds.2013.33.1965

[16]

P. M. Jordan. The effects of coupling on finite-amplitude acoustic traveling waves in thermoviscous gases: Blackstock's models. Evolution Equations and Control Theory, 2016, 5 (3) : 383-397. doi: 10.3934/eect.2016010

[17]

Hao Zhang, Hirofumi Izuhara, Yaping Wu. Asymptotic stability of two types of traveling waves for some predator-prey models. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2323-2342. doi: 10.3934/dcdsb.2021046

[18]

Sylvie Benzoni-Gavage, Laurent Chupin, Didier Jamet, Julien Vovelle. On a phase field model for solid-liquid phase transitions. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 1997-2025. doi: 10.3934/dcds.2012.32.1997

[19]

Valeria Berti, Mauro Fabrizio, Diego Grandi. A phase field model for liquid-vapour phase transitions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 317-330. doi: 10.3934/dcdss.2013.6.317

[20]

T. Tachim Medjo. Averaging of an homogeneous two-phase flow model with oscillating external forces. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3665-3690. doi: 10.3934/dcds.2012.32.3665

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (97)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]