\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

An optimal-order error estimate for a family of characteristic-mixed methods to transient convection-diffusion problems

Abstract Related Papers Cited by
  • In this paper we prove an optimal-order error estimate for a family of characteristic mixed method with arbitrary degree of mixed finite element approximations for the numerical solution of transient convection diffusion equations. This paper generalizes the results in [1, 61]. The proof of the main results is carried out via three lemmas, which are utilized to overcome the difficulties arising from the combination of MMOC and mixed finite element methods. Numerical experiments are presented to justify the theoretical analysis.
    Mathematics Subject Classification: Primary: 65N30, 65N15; Secondary: 76M10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    T. Arbogast and M. F. Wheeler, A characteristics-mixed finite element method for advection-dominated transport problems, SIAM J. Numer. Anal., 32 (1995), 404-424.doi: 10.1137/0732017.

    [2]

    D. N. Arnolds, L. R. Scott and M. Vogelus, Regular inversion of the divergence operator with Dirichlet boundary conditions on a polygonal, Ann. Scuola. Norm. Sup. Pisa, Cl. Sci-serie. IVXV, 1988, 169-192.

    [3]

    M. Bause and P. Knabner, Uniform error analysis for Lagrange-Galerkin approximations of convection-dominated problems, SIAM J. Numer. Anal., 39 (2002), 1954-1984 (electronic).doi: 10.1137/S0036142900367478.

    [4]

    J. P. Benque and J. Ronat, Quelques difficulties des modeles numeriques en hydraulique, Comp. Meth. Appl. Mech. Engrg., Glowinski and Lions (eds.), North-Holland, 1982, 471-494.

    [5]

    P. J. Binning and M. A. Celia, A finite volume Eulerian-Lagrangian localized adjoint method for solution of the contaminant transport equations in two-dimensional multi-phase flow systems, Water Resour. Res., 32 (1996), 103-114.doi: 10.1029/95WR02763.

    [6]

    F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, RAIRO Anal. Numér., 8 (1974), 129-151.

    [7]

    F. Brezzi and M. Fortin, "Mixed and Hybrid Finite Element Methods," Springer Series in Computational Mathematics, 15, Springer-Verlag, New York, 1991.

    [8]

    M. A. Celia, T. F. Russell, I. Herrera and R. E. Ewing, An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation, Advances in Water Resources, 13 (1990), 187-206.doi: 10.1016/0309-1708(90)90041-2.

    [9]

    Z. Chen, Characteristic mixed discontinuous finite element methods for advection-dominated diffusion problems, Comput. Methods Appl. Mech. Engrg., 191 (2002), 2509-2538.doi: 10.1016/S0045-7825(01)00411-X.

    [10]

    Z. Chen, S.-H. Chou and D. Y. Kwak, Characteristic-mixed covolume methods for advection-dominated diffusion problems, Numerical Linear Algebra with Applications, 13 (2006), 677-697.doi: 10.1002/nla.492.

    [11]

    P. G. Ciarlet, "The Finite Element Method for Elliptic Problems," Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978.doi: 10.1016/S0168-2024(08)70178-4.

    [12]

    H. K. Dahle, R. E. Ewing and T. F. Russell, Eulerian-Lagrangian localized adjoint methods for a nonlinear convection-diffusion equation, Comp. Meth. Appl. Mech. Engrg., 122 (1995), 223-250.doi: 10.1016/0045-7825(94)00733-4.

    [13]

    C. N. Dawson, T. F. Russell and M. F. Wheeler, Some improved error estimates for the modified method of characteristics, SIAM J. Numer. Anal., 26 (1989), 1487-1512.doi: 10.1137/0726087.

    [14]

    J. Douglas Jr., F. Furtado and F. Pereira, On the numerical simulation of water flooding of hetergeneous petroleum reserviors, Comput. Geosci., 1 (1997), 155-190.doi: 10.1023/A:1011565228179.

    [15]

    J. Douglas, Jr., C.-S. Huang and F. Pereira, The modified method of characteristics with adjusted advection, Numer. Math., 83 (1999), 353-369.doi: 10.1007/s002110050453.

    [16]

    J. Douglas, Jr. and T. F. Russell, Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J. Numer. Anal., 19 (1982), 871-885.doi: 10.1137/0719063.

    [17]

    M. S. Espedal and R. E. Ewing, Characteristic Petrov-Galerkin subdomain methods for two-phase immiscible flow, Proceedings of the first world congress on computational mechanics (Austin, Tex., 1986), Comp. Meth. Appl. Mech. Engrg., 64 (1987), 113-135.

    [18]

    L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics, V. 19, American Mathematical Society, Providence, RI, 1998.

    [19]

    R. E. Ewing (Ed.), "The Mathematics of Reservoir Simulation," Research Frontiers in Applied Mathematics 1, SIAM, Philadelphia, 1984.

    [20]

    R. E. Ewing, T. F. Russell and M. F. Wheeler, Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics, Comput. Methods Appl. Mech. Engrg., 47 (1984), 73-92.doi: 10.1016/0045-7825(84)90048-3.

    [21]

    A. O. Garder, D. W. Peaceman and A. L. Pozzi, Numerical calculations of multidimensional miscible displacement by the method of characteristics, Soc. Pet. Eng. J., 4 (1964), 26-36.

    [22]

    D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 224, Springer-Verlag, Berlin, 1983.

    [23]

    R. W. Healy and T. F. Russell, A finite-volume Eulerian-Lagrangian localized adjoint method for solution of the advection-dispersion equation, Water Resour. Res., 29 (1993), 2399-2413.doi: 10.1029/93WR00403.

    [24]

    R. W. Healy and T. F. Russell, Solution of the advection-dispersion equation in two dimensions by a finite-volume Eulerian-Lagrangian localized adjoint method, Adv. Water Res., 21 (1998), 11-26

    [25]

    J. M. Hervouet, Applications of the method of characteristics in their weak formulation to solving two-dimensional advection-equations on mesh grids, in "Computational Techniques for Fluid Flow," Recent Advances in Numerical Methods in Fluids, 5, Taylor et al. (eds.), Pineidge Press, 1986, 149-185.

    [26]

    C. Johnson and V. Thomée, Error estimates for some mixed finite element methods for parabolic type problems, RAIRO Anal. Numer., 15 (1981), 41-78.

    [27]

    X. Li, W. Wu and O. C. Zienkiewicz, Implicit characteristic Galerkin method for convection-diffusion equations, Int. J. Numer. Meth. Engrg., 47 (2000), 1689-1708.doi: 10.1002/(SICI)1097-0207(20000410)47:10<1689::AID-NME850>3.0.CO;2-W.

    [28]

    K. W. Morton, A. Priestley and E. Süli, Stability of the Lagrangian-Galerkin method with nonexact integration, RAIRO Model. Math. Anal. Num., 22 (1988), 625-653.

    [29]

    J. C. Nédélec, A new family of mixed finite elements in $\mathbf R^3$, Numerische Mathematik, 50 (1986), 57-81.doi: 10.1007/BF01389668.

    [30]

    S. P. Neuman, An Eulerian-Lagrangian numerical scheme for the dispersion-convection equation using conjugate space-time grids, J. Comp. Phys., 41 (1981), 270-294.doi: 10.1016/0021-9991(81)90097-8.

    [31]

    D. W. Peaceman, "Fundamentals of Numerical Reservoir Simulation," Elsevier, Amsterdam, 1977.

    [32]

    G. F. Pinder and H. H. Cooper, A numerical technique for calculating the transient position of the saltwater front, Water Resou. Res., 1970, 875-882.

    [33]

    O. PironneauOn the transport-diffusion algorithm and its application to the Navier-Stokes equations, Numer. Math., 38 (1981/82), 309-332. doi: 10.1007/BF01396435.

    [34]

    P. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical Aspects of the Finite Element Method, (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), 292-315, Lecture Notes in Math., Vol. 606, Springer, Berlin, 1977.

    [35]

    H.-G. Roos, M. Stynes and L. Tobiska, "Numerical Methods for Singularly Perturbed Differential Equations," Convection-Diffusion and Flow Problems, Springer Series in Computational Mathematics, 24, Springer-Verlag, Berlin, 1996.

    [36]

    E. Varoglu and W. D. L. Finn, Finite elements incorporating characteristics for one-dimensional diffusion-convection equation, J. Comput. Phys., 34 (1980), 371-389.doi: 10.1016/0021-9991(80)90095-9.

    [37]

    H. Wang, A family of ELLAM schemes for advection-diffusion-reaction equations and their convergence analyses, Numerical Methods for PDEs, 14 (1998), 739-780.

    [38]

    H. Wang, An optimal-order error estimate for an ELLAM scheme for two-dimensional linear advection-diffusion equations, SIAM J. Numer. Anal., 37 (2000), 1338-1368 (electronic).doi: 10.1137/S0036142998335686.

    [39]

    H. Wang, An optimal-order error estimate for MMOC and MMOCAA schemes for multidimensional advection-reaction equations, Numerical Methods for PDEs, 18 (2002), 69-84.

    [40]

    H. Wang, An optimal-order error estimate for a family of ELLAM-MFEM approximations to porous medium flow, SIAM J. Numer. Anal., 46 (2008), 2133-2152,doi: 10.1137/S0036142903428281.

    [41]

    H. Wang and M. Al-Lawatia, A locally conservative Eulerian-Lagrangian control-volume method for transient advection-diffusion equations, Numerical Methods for Partial Differential Equations, 22 (2005), 577-599.doi: 10.1002/num.20106.

    [42]

    H. Wang, H. K. Dahle, R. E. Ewing, M. S. Espedal, R. C. Sharpley and S. Man, An ELLAM scheme for advection-diffusion equations in two dimensions, SIAM J. Sci. Comput., 20 (1999), 2160-2194 (electronic).doi: 10.1137/S1064827596309396.

    [43]

    H. Wang, R. E. Ewing, G. Qin and S. L. Lyons, "An Eulerian-Lagrangian Formulation for Compositional Flow in Porous Media," The 2006 Society of Petroleum Engineering Annual Technical Conference in San Antonio, SPE - 102512, Sept 24-27, 2006.

    [44]

    H. Wang, R. E. Ewing, G. Qin, S. L. Lyons, M. Al-Lawatia and S. Man, A family of Eulerian-Lagrangian localized adjoint methods for multi-dimensional advection-reaction equations, J. Comput. Phys., 152 (1999), 120-163.doi: 10.1006/jcph.1999.6239.

    [45]

    H. Wang, R. E. Ewing and T. F. Russell, Eulerian-Lagrangian localized methods for convection-diffusion equations and their convergence analysis, IMA J. Numer. Anal., 15 (1995), 405-459.doi: 10.1093/imanum/15.3.405.

    [46]

    H. Wang, X. Shi and R. E. Ewing, An ELLAM scheme for multidimensional advection-reaction equations and its optimal-order error estimate, SIAM. J. Numer. Anal., 38 (2001), 1846-1885 (electronic).doi: 10.1137/S0036142999362389.

    [47]

    H. Wang and K. Wang, Uniform estimates for Eulerian-Lagrangian methods for singularly perturbed time-dependent problems, SIAM J. Numer. Anal., 45 (2007), 1305-1329.doi: 10.1137/060652816.

    [48]

    K. Wang, A uniformly optimal-order error estimate of an ELLAM scheme for unstady-state advection-diffusion equations, International Journal of Numerical Analysis and Modeling, 5 (2008), 286-302.

    [49]

    K. Wang, An optimal-order estimate for MMOC-MFEM approximations to porous medium flow, Numer. Methods for Partial Differential Equations, 25 (2008), 1283-1302.doi: 10.1002/num.20397.

    [50]

    K. Wang, A uniform optimal-order estimate for an Eulerian-Lagrangian discontinuous Galerkin method for transient advection-diffusion equations, Numer. Methods for Partial Differential Equations, 25 (2009), 87-109.doi: 10.1002/num.20338.

    [51]

    K. Wang and H. Wang, A uniform estimate for the ELLAM scheme for transport equations, Numer. Methods for PDEs, 24 (2008), 535-554.

    [52]

    K. Wang and H. Wang, An optimal-order error estimate to the modified method of characteristics for a degenerate convection-diffusion equation, International Journal of Numerical Analysis and Modeling, 6 (2009), 217-231.

    [53]

    K. Wang and H. Wang, A uniform estimate for the MMOC for two-dimensional advection-diffusion equations, Numer. Methods for PDEs, 26 (2010), 1054-1069.

    [54]

    K. Wang, H. Wang and M. Al-Lawatia, An Eulerian-Lagrangian discontinuous Galerkin method for transient advection-diffusion equations, Numer. Methods for Partial Differential Equations, 23 (2007), 1343-1367.doi: 10.1002/num.20223.

    [55]

    K. Wang, H. Wang and M. Al-Lawatia, A CFL-free explicit characteristic interior penalty scheme for linear advection-reaction equations, Numer. Methods for PDEs, 26 (2010), 561-595.

    [56]

    K. Wang, H. Wang, M. Al-Lawatia and H. Rui, A family of characteristic discontinuous Galerkin methods for transient advection-diffusion equations and their optimal-order $L^2$ error estimates, Commun. Comput. Phys., 6 (2009), 203-230.doi: 10.4208/cicp.2009.v6.p203.

    [57]

    M. F. Wheeler and C. N. Dawson, An operator-splitting method for advection-diffusion-reaction problems, MAFELAP Proceedings, 6, (Whiteman ed.), Academic Press, 1988, 463-482.

    [58]

    L. Wu and H. Wang, An Eulerian-Lagrangian single-node collocation method for transient advection-diffusion equations in multiple space dimensions, Numerical Methods for Partial Differential Equations, 20 (2004), 284-301.doi: 10.1002/num.10094.

    [59]

    L. Wu, H. Wang and G. F. Pinder, A nonconventional Eulerian-Lagrangian single-node collocation method with Hermite polynomials for unsteady-state advection-diffusion equations, Numerical Methods for PDEs, 19 (2003), 271-283.

    [60]

    L. Wu and K. WangA single-node characteristic collocation method for unsteady-state convection-diffusion equations in three-dimensional spaces, Numerical Methods for PDEs. doi: 10.1002/num.20552.

    [61]

    D. Yang, A characteristic mixed method with dynamic finite-element space for convection-dominated diffusion problems, J. Computational and Applied mathematics, 43 (1992), 343-353.doi: 10.1016/0377-0427(92)90020-X.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(86) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return