Citation: |
[1] |
T. Arbogast and M. F. Wheeler, A characteristics-mixed finite element method for advection-dominated transport problems, SIAM J. Numer. Anal., 32 (1995), 404-424.doi: 10.1137/0732017. |
[2] |
D. N. Arnolds, L. R. Scott and M. Vogelus, Regular inversion of the divergence operator with Dirichlet boundary conditions on a polygonal, Ann. Scuola. Norm. Sup. Pisa, Cl. Sci-serie. IVXV, 1988, 169-192. |
[3] |
M. Bause and P. Knabner, Uniform error analysis for Lagrange-Galerkin approximations of convection-dominated problems, SIAM J. Numer. Anal., 39 (2002), 1954-1984 (electronic).doi: 10.1137/S0036142900367478. |
[4] |
J. P. Benque and J. Ronat, Quelques difficulties des modeles numeriques en hydraulique, Comp. Meth. Appl. Mech. Engrg., Glowinski and Lions (eds.), North-Holland, 1982, 471-494. |
[5] |
P. J. Binning and M. A. Celia, A finite volume Eulerian-Lagrangian localized adjoint method for solution of the contaminant transport equations in two-dimensional multi-phase flow systems, Water Resour. Res., 32 (1996), 103-114.doi: 10.1029/95WR02763. |
[6] |
F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, RAIRO Anal. Numér., 8 (1974), 129-151. |
[7] |
F. Brezzi and M. Fortin, "Mixed and Hybrid Finite Element Methods," Springer Series in Computational Mathematics, 15, Springer-Verlag, New York, 1991. |
[8] |
M. A. Celia, T. F. Russell, I. Herrera and R. E. Ewing, An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation, Advances in Water Resources, 13 (1990), 187-206.doi: 10.1016/0309-1708(90)90041-2. |
[9] |
Z. Chen, Characteristic mixed discontinuous finite element methods for advection-dominated diffusion problems, Comput. Methods Appl. Mech. Engrg., 191 (2002), 2509-2538.doi: 10.1016/S0045-7825(01)00411-X. |
[10] |
Z. Chen, S.-H. Chou and D. Y. Kwak, Characteristic-mixed covolume methods for advection-dominated diffusion problems, Numerical Linear Algebra with Applications, 13 (2006), 677-697.doi: 10.1002/nla.492. |
[11] |
P. G. Ciarlet, "The Finite Element Method for Elliptic Problems," Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978.doi: 10.1016/S0168-2024(08)70178-4. |
[12] |
H. K. Dahle, R. E. Ewing and T. F. Russell, Eulerian-Lagrangian localized adjoint methods for a nonlinear convection-diffusion equation, Comp. Meth. Appl. Mech. Engrg., 122 (1995), 223-250.doi: 10.1016/0045-7825(94)00733-4. |
[13] |
C. N. Dawson, T. F. Russell and M. F. Wheeler, Some improved error estimates for the modified method of characteristics, SIAM J. Numer. Anal., 26 (1989), 1487-1512.doi: 10.1137/0726087. |
[14] |
J. Douglas Jr., F. Furtado and F. Pereira, On the numerical simulation of water flooding of hetergeneous petroleum reserviors, Comput. Geosci., 1 (1997), 155-190.doi: 10.1023/A:1011565228179. |
[15] |
J. Douglas, Jr., C.-S. Huang and F. Pereira, The modified method of characteristics with adjusted advection, Numer. Math., 83 (1999), 353-369.doi: 10.1007/s002110050453. |
[16] |
J. Douglas, Jr. and T. F. Russell, Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J. Numer. Anal., 19 (1982), 871-885.doi: 10.1137/0719063. |
[17] |
M. S. Espedal and R. E. Ewing, Characteristic Petrov-Galerkin subdomain methods for two-phase immiscible flow, Proceedings of the first world congress on computational mechanics (Austin, Tex., 1986), Comp. Meth. Appl. Mech. Engrg., 64 (1987), 113-135. |
[18] |
L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics, V. 19, American Mathematical Society, Providence, RI, 1998. |
[19] |
R. E. Ewing (Ed.), "The Mathematics of Reservoir Simulation," Research Frontiers in Applied Mathematics 1, SIAM, Philadelphia, 1984. |
[20] |
R. E. Ewing, T. F. Russell and M. F. Wheeler, Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics, Comput. Methods Appl. Mech. Engrg., 47 (1984), 73-92.doi: 10.1016/0045-7825(84)90048-3. |
[21] |
A. O. Garder, D. W. Peaceman and A. L. Pozzi, Numerical calculations of multidimensional miscible displacement by the method of characteristics, Soc. Pet. Eng. J., 4 (1964), 26-36. |
[22] |
D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 224, Springer-Verlag, Berlin, 1983. |
[23] |
R. W. Healy and T. F. Russell, A finite-volume Eulerian-Lagrangian localized adjoint method for solution of the advection-dispersion equation, Water Resour. Res., 29 (1993), 2399-2413.doi: 10.1029/93WR00403. |
[24] |
R. W. Healy and T. F. Russell, Solution of the advection-dispersion equation in two dimensions by a finite-volume Eulerian-Lagrangian localized adjoint method, Adv. Water Res., 21 (1998), 11-26 |
[25] |
J. M. Hervouet, Applications of the method of characteristics in their weak formulation to solving two-dimensional advection-equations on mesh grids, in "Computational Techniques for Fluid Flow," Recent Advances in Numerical Methods in Fluids, 5, Taylor et al. (eds.), Pineidge Press, 1986, 149-185. |
[26] |
C. Johnson and V. Thomée, Error estimates for some mixed finite element methods for parabolic type problems, RAIRO Anal. Numer., 15 (1981), 41-78. |
[27] |
X. Li, W. Wu and O. C. Zienkiewicz, Implicit characteristic Galerkin method for convection-diffusion equations, Int. J. Numer. Meth. Engrg., 47 (2000), 1689-1708.doi: 10.1002/(SICI)1097-0207(20000410)47:10<1689::AID-NME850>3.0.CO;2-W. |
[28] |
K. W. Morton, A. Priestley and E. Süli, Stability of the Lagrangian-Galerkin method with nonexact integration, RAIRO Model. Math. Anal. Num., 22 (1988), 625-653. |
[29] |
J. C. Nédélec, A new family of mixed finite elements in $\mathbf R^3$, Numerische Mathematik, 50 (1986), 57-81.doi: 10.1007/BF01389668. |
[30] |
S. P. Neuman, An Eulerian-Lagrangian numerical scheme for the dispersion-convection equation using conjugate space-time grids, J. Comp. Phys., 41 (1981), 270-294.doi: 10.1016/0021-9991(81)90097-8. |
[31] |
D. W. Peaceman, "Fundamentals of Numerical Reservoir Simulation," Elsevier, Amsterdam, 1977. |
[32] |
G. F. Pinder and H. H. Cooper, A numerical technique for calculating the transient position of the saltwater front, Water Resou. Res., 1970, 875-882. |
[33] |
O. Pironneau, On the transport-diffusion algorithm and its application to the Navier-Stokes equations, Numer. Math., 38 (1981/82), 309-332. doi: 10.1007/BF01396435. |
[34] |
P. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical Aspects of the Finite Element Method, (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), 292-315, Lecture Notes in Math., Vol. 606, Springer, Berlin, 1977. |
[35] |
H.-G. Roos, M. Stynes and L. Tobiska, "Numerical Methods for Singularly Perturbed Differential Equations," Convection-Diffusion and Flow Problems, Springer Series in Computational Mathematics, 24, Springer-Verlag, Berlin, 1996. |
[36] |
E. Varoglu and W. D. L. Finn, Finite elements incorporating characteristics for one-dimensional diffusion-convection equation, J. Comput. Phys., 34 (1980), 371-389.doi: 10.1016/0021-9991(80)90095-9. |
[37] |
H. Wang, A family of ELLAM schemes for advection-diffusion-reaction equations and their convergence analyses, Numerical Methods for PDEs, 14 (1998), 739-780. |
[38] |
H. Wang, An optimal-order error estimate for an ELLAM scheme for two-dimensional linear advection-diffusion equations, SIAM J. Numer. Anal., 37 (2000), 1338-1368 (electronic).doi: 10.1137/S0036142998335686. |
[39] |
H. Wang, An optimal-order error estimate for MMOC and MMOCAA schemes for multidimensional advection-reaction equations, Numerical Methods for PDEs, 18 (2002), 69-84. |
[40] |
H. Wang, An optimal-order error estimate for a family of ELLAM-MFEM approximations to porous medium flow, SIAM J. Numer. Anal., 46 (2008), 2133-2152,doi: 10.1137/S0036142903428281. |
[41] |
H. Wang and M. Al-Lawatia, A locally conservative Eulerian-Lagrangian control-volume method for transient advection-diffusion equations, Numerical Methods for Partial Differential Equations, 22 (2005), 577-599.doi: 10.1002/num.20106. |
[42] |
H. Wang, H. K. Dahle, R. E. Ewing, M. S. Espedal, R. C. Sharpley and S. Man, An ELLAM scheme for advection-diffusion equations in two dimensions, SIAM J. Sci. Comput., 20 (1999), 2160-2194 (electronic).doi: 10.1137/S1064827596309396. |
[43] |
H. Wang, R. E. Ewing, G. Qin and S. L. Lyons, "An Eulerian-Lagrangian Formulation for Compositional Flow in Porous Media," The 2006 Society of Petroleum Engineering Annual Technical Conference in San Antonio, SPE - 102512, Sept 24-27, 2006. |
[44] |
H. Wang, R. E. Ewing, G. Qin, S. L. Lyons, M. Al-Lawatia and S. Man, A family of Eulerian-Lagrangian localized adjoint methods for multi-dimensional advection-reaction equations, J. Comput. Phys., 152 (1999), 120-163.doi: 10.1006/jcph.1999.6239. |
[45] |
H. Wang, R. E. Ewing and T. F. Russell, Eulerian-Lagrangian localized methods for convection-diffusion equations and their convergence analysis, IMA J. Numer. Anal., 15 (1995), 405-459.doi: 10.1093/imanum/15.3.405. |
[46] |
H. Wang, X. Shi and R. E. Ewing, An ELLAM scheme for multidimensional advection-reaction equations and its optimal-order error estimate, SIAM. J. Numer. Anal., 38 (2001), 1846-1885 (electronic).doi: 10.1137/S0036142999362389. |
[47] |
H. Wang and K. Wang, Uniform estimates for Eulerian-Lagrangian methods for singularly perturbed time-dependent problems, SIAM J. Numer. Anal., 45 (2007), 1305-1329.doi: 10.1137/060652816. |
[48] |
K. Wang, A uniformly optimal-order error estimate of an ELLAM scheme for unstady-state advection-diffusion equations, International Journal of Numerical Analysis and Modeling, 5 (2008), 286-302. |
[49] |
K. Wang, An optimal-order estimate for MMOC-MFEM approximations to porous medium flow, Numer. Methods for Partial Differential Equations, 25 (2008), 1283-1302.doi: 10.1002/num.20397. |
[50] |
K. Wang, A uniform optimal-order estimate for an Eulerian-Lagrangian discontinuous Galerkin method for transient advection-diffusion equations, Numer. Methods for Partial Differential Equations, 25 (2009), 87-109.doi: 10.1002/num.20338. |
[51] |
K. Wang and H. Wang, A uniform estimate for the ELLAM scheme for transport equations, Numer. Methods for PDEs, 24 (2008), 535-554. |
[52] |
K. Wang and H. Wang, An optimal-order error estimate to the modified method of characteristics for a degenerate convection-diffusion equation, International Journal of Numerical Analysis and Modeling, 6 (2009), 217-231. |
[53] |
K. Wang and H. Wang, A uniform estimate for the MMOC for two-dimensional advection-diffusion equations, Numer. Methods for PDEs, 26 (2010), 1054-1069. |
[54] |
K. Wang, H. Wang and M. Al-Lawatia, An Eulerian-Lagrangian discontinuous Galerkin method for transient advection-diffusion equations, Numer. Methods for Partial Differential Equations, 23 (2007), 1343-1367.doi: 10.1002/num.20223. |
[55] |
K. Wang, H. Wang and M. Al-Lawatia, A CFL-free explicit characteristic interior penalty scheme for linear advection-reaction equations, Numer. Methods for PDEs, 26 (2010), 561-595. |
[56] |
K. Wang, H. Wang, M. Al-Lawatia and H. Rui, A family of characteristic discontinuous Galerkin methods for transient advection-diffusion equations and their optimal-order $L^2$ error estimates, Commun. Comput. Phys., 6 (2009), 203-230.doi: 10.4208/cicp.2009.v6.p203. |
[57] |
M. F. Wheeler and C. N. Dawson, An operator-splitting method for advection-diffusion-reaction problems, MAFELAP Proceedings, 6, (Whiteman ed.), Academic Press, 1988, 463-482. |
[58] |
L. Wu and H. Wang, An Eulerian-Lagrangian single-node collocation method for transient advection-diffusion equations in multiple space dimensions, Numerical Methods for Partial Differential Equations, 20 (2004), 284-301.doi: 10.1002/num.10094. |
[59] |
L. Wu, H. Wang and G. F. Pinder, A nonconventional Eulerian-Lagrangian single-node collocation method with Hermite polynomials for unsteady-state advection-diffusion equations, Numerical Methods for PDEs, 19 (2003), 271-283. |
[60] |
L. Wu and K. Wang, A single-node characteristic collocation method for unsteady-state convection-diffusion equations in three-dimensional spaces, Numerical Methods for PDEs. doi: 10.1002/num.20552. |
[61] |
D. Yang, A characteristic mixed method with dynamic finite-element space for convection-dominated diffusion problems, J. Computational and Applied mathematics, 43 (1992), 343-353.doi: 10.1016/0377-0427(92)90020-X. |