March  2011, 15(2): 357-371. doi: 10.3934/dcdsb.2011.15.357

Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one

1. 

Department of Mathematics, South China Normal University, Guangzhou, Guangdong 510631

2. 

Department of Mathematics, University of Kentucky, Lexington, KY 40513, United States

3. 

School of Mathematical Sciences, South China Normal University, Guangzhou, 510631, China

Received  November 2009 Revised  March 2010 Published  December 2010

We consider the equation modeling the compressible hydrodynamic flow of liquid crystals in one dimension. In this paper, we establish the existence of a weak solution $(\rho, u,n)$ of such a system when the initial density function $0\le \rho_0 \in L^\gamma$ for $\gamma>1$, $u_0\in L^2$, and $n_0\in H^1$. This extends a previous result by [12], where the existence of a weak solution was obtained under the stronger assumption that the initial density function $0$<$c\le \rho_0\in H^1$, $u_0\in L^2$, and $n_0\in H^1$.
Citation: Shijin Ding, Changyou Wang, Huanyao Wen. Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one. Discrete and Continuous Dynamical Systems - B, 2011, 15 (2) : 357-371. doi: 10.3934/dcdsb.2011.15.357
References:
[1]

J. Ericksen, Hydrostatic theory of liquid crystal, Arch. Rational Mech. Anal., 9 (1962), 371-378. doi: 10.1007/BF00253358.

[2]

F. Leslie, Some constitute equations for anisotropic fluids, Q. J. Mech. Appl. Math., 19 (1966), 357-370. doi: 10.1093/qjmam/19.3.357.

[3]

F. H. Lin, Nonlinear theory of defects in nematic liquid crystal: phase transition and flow phenomena, Comm. Pure Appl. Math., 42 (1989), 789-814. doi: 10.1002/cpa.3160420605.

[4]

F. H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math. Vol. XLV III (1995), 501-537. doi: 10.1002/cpa.3160480503.

[5]

F. H. Lin and C. Liu, Existence of solutions for the Ericksen-Leslie system, Arch. Rational Mech. Anal., 154 (2000), 135-156. doi: 10.1007/s002050000102.

[6]

F. H. Lin and C. Liu, Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals, DCDS, 2 (1996), 1-23.

[7]

L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35 (1982), 771-831. doi: 10.1002/cpa.3160350604.

[8]

C. Liu and N. J. Walkington, Mixed methods for the approximation of liquid crystal flows, Math. Modeling and Numer. Anal., 36 (2002), 205-222. doi: 10.1051/m2an:2002010.

[9]

Blanca Climent-Ezquerra, Francisco Guillén-González and Marko Rojas-Medar, Reproductivity for a nematic liquid crystal model, Z. angew. Math. Phys. (2006) 984-998.

[10]

F. H. Lin, J. Y. Lin and C. Y. Wang, Liquid crystal flows in dimensions two, Arch. Rational Mech. Anal., 197 (2010), 297-336. doi: 10.1007/s00205-009-0278-x.

[11]

H. Y. Wen and S. J. Ding, Solutions of incompressible hydrodynamic flow of liquid crystals, Preprint (2009).

[12]

S. J. Ding, J. Y. Lin, C. Y. Wang and H. Y. Wen, Compressible hydrodynamic flow of liquid crystals in 1-D, Preprint (2009).

[13]

P. L. Lions, "Mathematical Topics in Fluid Mechanics," Vol. II, Compressible Models. Clarendon Press, Oxford, 1998.

[14]

S. Jiang and P. Zhang, On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations, Commun. Math. Phys., 215 (2001), 559-581. doi: 10.1007/PL00005543.

[15]

E. Feireisl, A. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3 (2001), 358-392. doi: 10.1007/PL00000976.

[16]

J. Simon, Nonhomogeneous viscous incompressible fluids: Existence of velocity, density and pressure, SIAM J. Math. Anal., 21 (1990), 1093-1117. doi: 10.1137/0521061.

[17]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," Amer. Math. Soc., Providence RI, 1968.

[18]

L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics, Vol. 19, 1998.

[19]

E. Feireisl, "Dynamics of Viscous Compressible Fluids," Oxford University Press, Oxford, 2004.

[20]

P. L. Lions, "Mathematical Topics in Fluid Mechanics," Vol. I, Incompressible Models, Clarendon Press, Oxford, 1996.

show all references

References:
[1]

J. Ericksen, Hydrostatic theory of liquid crystal, Arch. Rational Mech. Anal., 9 (1962), 371-378. doi: 10.1007/BF00253358.

[2]

F. Leslie, Some constitute equations for anisotropic fluids, Q. J. Mech. Appl. Math., 19 (1966), 357-370. doi: 10.1093/qjmam/19.3.357.

[3]

F. H. Lin, Nonlinear theory of defects in nematic liquid crystal: phase transition and flow phenomena, Comm. Pure Appl. Math., 42 (1989), 789-814. doi: 10.1002/cpa.3160420605.

[4]

F. H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math. Vol. XLV III (1995), 501-537. doi: 10.1002/cpa.3160480503.

[5]

F. H. Lin and C. Liu, Existence of solutions for the Ericksen-Leslie system, Arch. Rational Mech. Anal., 154 (2000), 135-156. doi: 10.1007/s002050000102.

[6]

F. H. Lin and C. Liu, Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals, DCDS, 2 (1996), 1-23.

[7]

L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35 (1982), 771-831. doi: 10.1002/cpa.3160350604.

[8]

C. Liu and N. J. Walkington, Mixed methods for the approximation of liquid crystal flows, Math. Modeling and Numer. Anal., 36 (2002), 205-222. doi: 10.1051/m2an:2002010.

[9]

Blanca Climent-Ezquerra, Francisco Guillén-González and Marko Rojas-Medar, Reproductivity for a nematic liquid crystal model, Z. angew. Math. Phys. (2006) 984-998.

[10]

F. H. Lin, J. Y. Lin and C. Y. Wang, Liquid crystal flows in dimensions two, Arch. Rational Mech. Anal., 197 (2010), 297-336. doi: 10.1007/s00205-009-0278-x.

[11]

H. Y. Wen and S. J. Ding, Solutions of incompressible hydrodynamic flow of liquid crystals, Preprint (2009).

[12]

S. J. Ding, J. Y. Lin, C. Y. Wang and H. Y. Wen, Compressible hydrodynamic flow of liquid crystals in 1-D, Preprint (2009).

[13]

P. L. Lions, "Mathematical Topics in Fluid Mechanics," Vol. II, Compressible Models. Clarendon Press, Oxford, 1998.

[14]

S. Jiang and P. Zhang, On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations, Commun. Math. Phys., 215 (2001), 559-581. doi: 10.1007/PL00005543.

[15]

E. Feireisl, A. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3 (2001), 358-392. doi: 10.1007/PL00000976.

[16]

J. Simon, Nonhomogeneous viscous incompressible fluids: Existence of velocity, density and pressure, SIAM J. Math. Anal., 21 (1990), 1093-1117. doi: 10.1137/0521061.

[17]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," Amer. Math. Soc., Providence RI, 1968.

[18]

L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics, Vol. 19, 1998.

[19]

E. Feireisl, "Dynamics of Viscous Compressible Fluids," Oxford University Press, Oxford, 2004.

[20]

P. L. Lions, "Mathematical Topics in Fluid Mechanics," Vol. I, Incompressible Models, Clarendon Press, Oxford, 1996.

[1]

Shijin Ding, Junyu Lin, Changyou Wang, Huanyao Wen. Compressible hydrodynamic flow of liquid crystals in 1-D. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 539-563. doi: 10.3934/dcds.2012.32.539

[2]

Xian-Gao Liu, Jie Qing. Globally weak solutions to the flow of compressible liquid crystals system. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 757-788. doi: 10.3934/dcds.2013.33.757

[3]

Qiang Tao, Ying Yang. Exponential stability for the compressible nematic liquid crystal flow with large initial data. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1661-1669. doi: 10.3934/cpaa.2016007

[4]

Sili Liu, Xinhua Zhao, Yingshan Chen. A new blowup criterion for strong solutions of the compressible nematic liquid crystal flow. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4515-4533. doi: 10.3934/dcdsb.2020110

[5]

Xiaoli Li. Global strong solution for the incompressible flow of liquid crystals with vacuum in dimension two. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4907-4922. doi: 10.3934/dcds.2017211

[6]

Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Isotropic-nematic phase transitions in liquid crystals. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 565-579. doi: 10.3934/dcdss.2011.4.565

[7]

Wenya Ma, Yihang Hao, Xiangao Liu. Shape optimization in compressible liquid crystals. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1623-1639. doi: 10.3934/cpaa.2015.14.1623

[8]

Qunyi Bie, Haibo Cui, Qiru Wang, Zheng-An Yao. Incompressible limit for the compressible flow of liquid crystals in $ L^p$ type critical Besov spaces. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 2879-2910. doi: 10.3934/dcds.2018124

[9]

Jihong Zhao, Qiao Liu, Shangbin Cui. Global existence and stability for a hydrodynamic system in the nematic liquid crystal flows. Communications on Pure and Applied Analysis, 2013, 12 (1) : 341-357. doi: 10.3934/cpaa.2013.12.341

[10]

Boling Guo, Yongqian Han, Guoli Zhou. Random attractor for the 2D stochastic nematic liquid crystals flows. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2349-2376. doi: 10.3934/cpaa.2019106

[11]

Geng Chen, Ping Zhang, Yuxi Zheng. Energy conservative solutions to a nonlinear wave system of nematic liquid crystals. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1445-1468. doi: 10.3934/cpaa.2013.12.1445

[12]

Zdzisław Brzeźniak, Erika Hausenblas, Paul André Razafimandimby. A note on the stochastic Ericksen-Leslie equations for nematic liquid crystals. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 5785-5802. doi: 10.3934/dcdsb.2019106

[13]

Tomás Caraballo, Cecilia Cavaterra. A 3D isothermal model for nematic liquid crystals with delay terms. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 2117-2133. doi: 10.3934/dcdss.2022097

[14]

Yuming Chu, Yihang Hao, Xiangao Liu. Global weak solutions to a general liquid crystals system. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2681-2710. doi: 10.3934/dcds.2013.33.2681

[15]

Hao Wu. Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 379-396. doi: 10.3934/dcds.2010.26.379

[16]

Apala Majumdar. The Landau-de Gennes theory of nematic liquid crystals: Uniaxiality versus Biaxiality. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1303-1337. doi: 10.3934/cpaa.2012.11.1303

[17]

Fanghua Lin, Chun Liu. Partial regularity of the dynamic system modeling the flow of liquid crystals. Discrete and Continuous Dynamical Systems, 1996, 2 (1) : 1-22. doi: 10.3934/dcds.1996.2.1

[18]

Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure and Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637

[19]

Yang Liu, Sining Zheng, Huapeng Li, Shengquan Liu. Strong solutions to Cauchy problem of 2D compressible nematic liquid crystal flows. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3921-3938. doi: 10.3934/dcds.2017165

[20]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (75)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]