\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the stochastic immersed boundary method with an implicit interface formulation

Abstract Related Papers Cited by
  • In this paper, we present a consistent and rigorous derivation of some stochastic fluid-structure interaction models based on an implicit interface formulation of the stochastic immersed boundary method. Based on the fluctuation-dissipation theorem, a proper form can be derived for the noise term to be incorporated into the deterministic hydrodynamic fluid-structure interaction models in either the phase field or level-set framework. The resulting stochastic systems not only capture the fluctuation effect near equilibrium but also provide an effective tool to model the complex interfacial morphology in a fluctuating fluid.
    Mathematics Subject Classification: 35R60, 60H15, 76D03, 76Z99.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. M. Anderson, G. B. McFadden and A. A. Wheeler, Diffuse-interface methods in fluid mechanics, In "Annual Review of Fluid Mechanics," volume 30 of Annu. Rev. Fluid Mech., pages 139-165. Annual Reviews, Palo Alto, CA, 1998.

    [2]

    Paul J. Atzberger, Peter R. Kramer and Charles S. Peskin, A stochastic immersed boundary method for fluid-structure dynamics at microscopic length scales, J. Comput. Phys., 224 (2007), 1255-1292.doi: 10.1016/j.jcp.2006.11.015.

    [3]

    J. Thomas Beale and John Strain, Locally corrected semi-Lagrangian methods for Stokes flow with moving elastic interfaces, J. Comput. Phys., 227 (2008), 3896-3920.doi: 10.1016/j.jcp.2007.11.047.

    [4]

    K. Kassner, T. Biben and C. Misbah, Phase-field approach to three-dimensional vesicle dynamics, Phys. Rev. E, 72 (2005), 041921.doi: 10.1103/PhysRevE.72.041921.

    [5]

    Yann Brenier, The least action principle and the related concept of generalized flows for incompressible perfect fluids, J. Amer. Math. Soc., 2 (1989), 225-255.

    [6]

    J. Cahn and J. Hilliard, Free energy of a Nonuniform system. III. Nucleation in a two-component incompressible fluid, J. Chem. Phys., 31 (1959), 688-699.doi: 10.1063/1.1730447.

    [7]

    Georges-Henri Cottet and Emmanuel Maitre, A level-set formulation of immersed boundary methods for fluid-structure interaction problems, C. R. Math. Acad. Sci. Paris, 338 (2004), 581-586.

    [8]

    Georges-Henri Cottet and Emmanuel Maitre, A level set method for fluid-structure interactions with immersed surfaces, Math. Models Methods Appl. Sci., 16 (2006), 415-438.doi: 10.1142/S0218202506001212.

    [9]

    Georges-Henri Cottet, Emmanuel Maitre and Thomas Milcent, Eulerian formulation and level set models for incompressible fluid-structure interaction, M2AN Math. Model. Numer. Anal., 42 (2008), 471-492.doi: 10.1051/m2an:2008013.

    [10]

    Guiseppe Da Prato and Jerzy Zabczyk, "Stochastic Equations in Infinite Dimensions," Cambridge University Press, 2008.

    [11]

    Qiang Du and Manlin LiAnalysis of a stochastic implicit interface model for an immersed elastic surface in a fluctuating fluid, Arc. Rational Mech. Anal., to appear.

    [12]

    Qiang Du, Manlin Li and Chun Liu, Analysis of a phase field Navier-Stokes vesicle-fluid interaction model, Discrete Contin. Dyn. Syst. Ser. B, 8 (2007), 539-556.doi: 10.3934/dcdsb.2007.8.539.

    [13]

    Qiang Du, Chun Liu, Rolf Ryham and Xiaoqiang Wang, Energetic variational approaches to modeling vesicle and fluid interactions, Physica D, 238 (2009), 923-930.doi: 10.1016/j.physd.2009.02.015.

    [14]

    Qiang Du, Chun Liu, Rolf Ryham and Xiaoqiang Wang, Modeling of the spontaneous curvature effect in static cell membrane deformations by a phase field formulation, Comm Pure Appl Anal., 4 (2005), 537-548.doi: 10.3934/cpaa.2005.4.537.

    [15]

    Qiang Du, Chun Liu and Xiaoqiang Wang, A phase field approach in the numerical study of the elastic bending energy for vesicle membranes, Journal of Computational Physics, 198 (2004), 450-468.doi: 10.1016/j.jcp.2004.01.029.

    [16]

    Xiaobing Feng, Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows, SIAM J. Numer. Anal., 44 (2006), 1049-1072.doi: 10.1137/050638333.

    [17]

    Ronald F. Fox and George E. Uhlenbeck, Contributions to non-equilibrium thermodynamics. I. Theory of hydrodynamical fluctuations, Physics of Fluids, 13 (1970), 1893-1902.doi: 10.1063/1.1693183.

    [18]

    D. Jacqmin, Calculation of two-phase Navier-Stokes flows using phase-field modeling, J. Computational Physics, 155 (1999), 96-127.doi: 10.1006/jcph.1999.6332.

    [19]

    D. Jamet and C. Misbah, Towards a thermodynamically consistent picture of the phase-field model of vesicles: Local membrane incompressibility, Phys. Rev. E, 76 (2007), 051907.doi: 10.1103/PhysRevE.76.051907.

    [20]

    Peter R. Kramer, Charles S. Peskin and Paul J. Atzberger, On the foundations of the stochastic immersed boundary method, Comput. Methods Appl. Mech. Engrg., 197 (2008), 2232-2249.

    [21]

    Peter R. Kramer and Andrew J. Majda, Stochastic mode reduction for particle-based simulation methods for complex microfluid systems, SIAM J. Appl. Math., 64 (2004), 401-422.doi: 10.1137/S0036139903422140.

    [22]

    L. D. Landau and E. M. Lifshitz, "Fluid Mechanics," vol. 6, London, Pergamon Press, 1959.

    [23]

    J. Langer, Dendrites, viscous fingers, and the theory of pattern formation, Science, 243 (1989), 1150-1156.doi: 10.1126/science.243.4895.1150.

    [24]

    Jean Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.doi: 10.1007/BF02547354.

    [25]

    Andrew J. Majda and Xiaoming Wang, The emergence of large-scale coherent structure under small-scale random bombardments, Comm. Pure Appl. Math., 59 (2006), 467-500.doi: 10.1002/cpa.20102.

    [26]

    S. Osher and J. Sethian, Fronts propagating with curvature dependent speed: Algorithms based on Hamilton Jacobi formulations, Journal of Computational Physics, 79 (1988), 12-49.doi: 10.1016/0021-9991(88)90002-2.

    [27]

    G. A. Pavliotis and A. M. Stuart, White noise limits for inertial particles in a random field, Multiscale Model. Simul., 1 (2003), 527-533.doi: 10.1137/S1540345903421076.

    [28]

    Charles S. Peskin, The immersed boundary method, Acta Numer., 11 (2002), 479-517.doi: 10.1017/CBO9780511550140.007.

    [29]

    Samuel A. Safran, "Statistical Thermodynamics Of Surfaces, Interfaces And Membranes," Westview Press, 2003.

    [30]

    Udo Seifert, Configurations of fluid membranes and vesicles, Advances in Physics, 46 (1997), 13-137.doi: 10.1080/00018739700101488.

    [31]

    Roger Temam, "Navier-Stokes Equations and Nonlinear Functional Analysis," Society for Industrial Mathematics, 1983.

    [32]

    P. Yue, J. J. Feng, C. Liu and J. Shen, A diffuse-interface method for simulating two-phase flows of complex fluids, J. Fluid Mech., 515 (2004), 293-317.doi: 10.1017/S0022112004000370.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(100) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return