\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Accurate simulations of 2-D phase shift masks with a generalized discontinuous Galerkin (GDG) method

Abstract Related Papers Cited by
  • In this paper, we apply a newly developed generalized discontinuous Galerkin (GDG) method for rigorous simulations of 2-D phase shift masks (PSM). The main advantage of the GDG method is its accurate treatment of jumps in solutions using the Dirac $\delta$ generalized functions as source terms of partial differential equations. The scattering problem of the PSM is cast with a total field/scattering field formulation while the GDG method is used to handle the inhomogeneous jump conditions between the total and scattering fields along the physical and perfectly matched layer (PML) interfaces. Numerical results demonstrate the high order accuracy of the GDG method and its capability of handling the non-periodic structures such as optical images near mask edges.
    Mathematics Subject Classification: Primary: 35Q60; Secondary: 35J05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. Arnold, F. Brezzi, B. Cockburn and L. D. Marini, United analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39 (2002), 1749-1779.doi: 10.1137/S0036142901384162.

    [2]

    G. A. Baker, Finite element methods for elliptic equations using nonconforming elements, Math. Comput., 31 (1977), 45-59.doi: 10.1090/S0025-5718-1977-0431742-5.

    [3]

    S. Burger and R. Kohle, Benchmark of FEM, waveguide and FDTD algorithms for rigorous mask simulation, Proc. SPIE, 5992 (2005), 368-379.

    [4]

    W. C. Chew, "Waves and Fields in Inhomogeneous Media," New York: Van Nostrand Reinhold, 1999.

    [5]

    W. C. Chew and W. H. Weedon, A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates, IEEE Microwave Guided Wave Lett., 7 (1994), 599-604.

    [6]

    B. Cockburn, S. Hou and C. W. Shu, Tvb Runge kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case, Math. Comput., 54 (1990), 545-581.

    [7]

    A. Erdmann and P. Evanschitzky, Rigorous electromagnetic field mask modeling and related lithographic effcts in the low k1 and ultrahigh numerical aperture regime, J. Microlith., Microfab., Microsyst., 6 (2007), 031002.

    [8]

    K. Fan, W. Cai and X. Ji, A generalized discontinuous Galerkin (GDG) method for Schrödinger equations with nonsmooth solutions, J. Comput. Phys., 227 (2008), 2387-2410.doi: 10.1016/j.jcp.2007.10.023.

    [9]

    W. Lee and F. L. Degertekin, Rigorous coupled-wave analysis of multilayered grating structures, J. Lightwave Technol., 22 (2004), 2359-2363.doi: 10.1109/JLT.2004.833278.

    [10]

    M. D. Levenson, N. S. Viswanathan and R. A. Simpson, Improving resolution in photolithography with a phase-shifting mask, IEEE Trans. on Electron Devices, 29 (1982), 1828-1836.doi: 10.1109/T-ED.1982.21037.

    [11]

    K. D. Lucas, H. Tanabe and A. J. Strojwas, Efficient and rigorous three-dimensional model for optical lithography simulation, J. Opt. Soc. Am., 13 (1996), 2187-2199.doi: 10.1364/JOSAA.13.002187.

    [12]

    T. Sato and A. Endo, Impact of polarization for an attenuated phase shift mask with ArF hyper-numerical aperture lithography, J. Microlith., Microfab., Microsyst., 5 (2006), 043001.

    [13]

    A. Taflove and S. C. Hagness, "Computational Electromagnetics: The Finite-Difference Time-Domain Method," 2nd edition,

    [14]

    A. K. Wong and A. R. Neureuther, Rigorous three-dimensional time-domain finite-difference electromagnetic simulation for photolithographic applications, IEEE Trans. on Semiconductor Manufacturing, 8 (1995), 419-431.doi: 10.1109/66.475184.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(63) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return