March  2011, 15(2): 401-415. doi: 10.3934/dcdsb.2011.15.401

Accurate simulations of 2-D phase shift masks with a generalized discontinuous Galerkin (GDG) method

1. 

LSEC, Institute of Computational Mathematics, Chinese Academy of Science, Beijing 100190, China

2. 

Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC 28223, United States

Received  November 2009 Revised  March 2010 Published  December 2010

In this paper, we apply a newly developed generalized discontinuous Galerkin (GDG) method for rigorous simulations of 2-D phase shift masks (PSM). The main advantage of the GDG method is its accurate treatment of jumps in solutions using the Dirac $\delta$ generalized functions as source terms of partial differential equations. The scattering problem of the PSM is cast with a total field/scattering field formulation while the GDG method is used to handle the inhomogeneous jump conditions between the total and scattering fields along the physical and perfectly matched layer (PML) interfaces. Numerical results demonstrate the high order accuracy of the GDG method and its capability of handling the non-periodic structures such as optical images near mask edges.
Citation: Xia Ji, Wei Cai. Accurate simulations of 2-D phase shift masks with a generalized discontinuous Galerkin (GDG) method. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 401-415. doi: 10.3934/dcdsb.2011.15.401
References:
[1]

D. Arnold, F. Brezzi, B. Cockburn and L. D. Marini, United analysis of discontinuous Galerkin methods for elliptic problems,, SIAM J. Numer. Anal., 39 (2002), 1749.  doi: 10.1137/S0036142901384162.  Google Scholar

[2]

G. A. Baker, Finite element methods for elliptic equations using nonconforming elements,, Math. Comput., 31 (1977), 45.  doi: 10.1090/S0025-5718-1977-0431742-5.  Google Scholar

[3]

S. Burger and R. Kohle, Benchmark of FEM, waveguide and FDTD algorithms for rigorous mask simulation,, Proc. SPIE, 5992 (2005), 368.   Google Scholar

[4]

W. C. Chew, "Waves and Fields in Inhomogeneous Media,", New York: Van Nostrand Reinhold, (1999).   Google Scholar

[5]

W. C. Chew and W. H. Weedon, A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates,, IEEE Microwave Guided Wave Lett., 7 (1994), 599.   Google Scholar

[6]

B. Cockburn, S. Hou and C. W. Shu, Tvb Runge kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case,, Math. Comput., 54 (1990), 545.   Google Scholar

[7]

A. Erdmann and P. Evanschitzky, Rigorous electromagnetic field mask modeling and related lithographic effcts in the low k1 and ultrahigh numerical aperture regime,, J. Microlith., 6 (2007).   Google Scholar

[8]

K. Fan, W. Cai and X. Ji, A generalized discontinuous Galerkin (GDG) method for Schrödinger equations with nonsmooth solutions,, J. Comput. Phys., 227 (2008), 2387.  doi: 10.1016/j.jcp.2007.10.023.  Google Scholar

[9]

W. Lee and F. L. Degertekin, Rigorous coupled-wave analysis of multilayered grating structures,, J. Lightwave Technol., 22 (2004), 2359.  doi: 10.1109/JLT.2004.833278.  Google Scholar

[10]

M. D. Levenson, N. S. Viswanathan and R. A. Simpson, Improving resolution in photolithography with a phase-shifting mask,, IEEE Trans. on Electron Devices, 29 (1982), 1828.  doi: 10.1109/T-ED.1982.21037.  Google Scholar

[11]

K. D. Lucas, H. Tanabe and A. J. Strojwas, Efficient and rigorous three-dimensional model for optical lithography simulation,, J. Opt. Soc. Am., 13 (1996), 2187.  doi: 10.1364/JOSAA.13.002187.  Google Scholar

[12]

T. Sato and A. Endo, Impact of polarization for an attenuated phase shift mask with ArF hyper-numerical aperture lithography,, J. Microlith., 5 (2006).   Google Scholar

[13]

A. Taflove and S. C. Hagness, "Computational Electromagnetics: The Finite-Difference Time-Domain Method," 2nd, edition, ().   Google Scholar

[14]

A. K. Wong and A. R. Neureuther, Rigorous three-dimensional time-domain finite-difference electromagnetic simulation for photolithographic applications,, IEEE Trans. on Semiconductor Manufacturing, 8 (1995), 419.  doi: 10.1109/66.475184.  Google Scholar

show all references

References:
[1]

D. Arnold, F. Brezzi, B. Cockburn and L. D. Marini, United analysis of discontinuous Galerkin methods for elliptic problems,, SIAM J. Numer. Anal., 39 (2002), 1749.  doi: 10.1137/S0036142901384162.  Google Scholar

[2]

G. A. Baker, Finite element methods for elliptic equations using nonconforming elements,, Math. Comput., 31 (1977), 45.  doi: 10.1090/S0025-5718-1977-0431742-5.  Google Scholar

[3]

S. Burger and R. Kohle, Benchmark of FEM, waveguide and FDTD algorithms for rigorous mask simulation,, Proc. SPIE, 5992 (2005), 368.   Google Scholar

[4]

W. C. Chew, "Waves and Fields in Inhomogeneous Media,", New York: Van Nostrand Reinhold, (1999).   Google Scholar

[5]

W. C. Chew and W. H. Weedon, A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates,, IEEE Microwave Guided Wave Lett., 7 (1994), 599.   Google Scholar

[6]

B. Cockburn, S. Hou and C. W. Shu, Tvb Runge kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case,, Math. Comput., 54 (1990), 545.   Google Scholar

[7]

A. Erdmann and P. Evanschitzky, Rigorous electromagnetic field mask modeling and related lithographic effcts in the low k1 and ultrahigh numerical aperture regime,, J. Microlith., 6 (2007).   Google Scholar

[8]

K. Fan, W. Cai and X. Ji, A generalized discontinuous Galerkin (GDG) method for Schrödinger equations with nonsmooth solutions,, J. Comput. Phys., 227 (2008), 2387.  doi: 10.1016/j.jcp.2007.10.023.  Google Scholar

[9]

W. Lee and F. L. Degertekin, Rigorous coupled-wave analysis of multilayered grating structures,, J. Lightwave Technol., 22 (2004), 2359.  doi: 10.1109/JLT.2004.833278.  Google Scholar

[10]

M. D. Levenson, N. S. Viswanathan and R. A. Simpson, Improving resolution in photolithography with a phase-shifting mask,, IEEE Trans. on Electron Devices, 29 (1982), 1828.  doi: 10.1109/T-ED.1982.21037.  Google Scholar

[11]

K. D. Lucas, H. Tanabe and A. J. Strojwas, Efficient and rigorous three-dimensional model for optical lithography simulation,, J. Opt. Soc. Am., 13 (1996), 2187.  doi: 10.1364/JOSAA.13.002187.  Google Scholar

[12]

T. Sato and A. Endo, Impact of polarization for an attenuated phase shift mask with ArF hyper-numerical aperture lithography,, J. Microlith., 5 (2006).   Google Scholar

[13]

A. Taflove and S. C. Hagness, "Computational Electromagnetics: The Finite-Difference Time-Domain Method," 2nd, edition, ().   Google Scholar

[14]

A. K. Wong and A. R. Neureuther, Rigorous three-dimensional time-domain finite-difference electromagnetic simulation for photolithographic applications,, IEEE Trans. on Semiconductor Manufacturing, 8 (1995), 419.  doi: 10.1109/66.475184.  Google Scholar

[1]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[2]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[3]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[4]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[5]

Waixiang Cao, Lueling Jia, Zhimin Zhang. A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 81-105. doi: 10.3934/dcdsb.2020327

[6]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[7]

Jing Zhou, Cheng Lu, Ye Tian, Xiaoying Tang. A SOCP relaxation based branch-and-bound method for generalized trust-region subproblem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 151-168. doi: 10.3934/jimo.2019104

[8]

Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332

[9]

Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096

[10]

Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126

[11]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[12]

Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020180

[13]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[14]

Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054

[15]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[16]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[17]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[18]

Qing-Hu Hou, Yarong Wei. Telescoping method, summation formulas, and inversion pairs. Electronic Research Archive, , () : -. doi: 10.3934/era.2021007

[19]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[20]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]