• Previous Article
    Shearing the I-N phase transition of liquid crystalline polymers: Long-time memory of defect initial data
  • DCDS-B Home
  • This Issue
  • Next Article
    Accurate simulations of 2-D phase shift masks with a generalized discontinuous Galerkin (GDG) method
March  2011, 15(2): 417-456. doi: 10.3934/dcdsb.2011.15.417

A multicomponent model for biofilm-drug interaction

1. 

US Naval Research Laboratory, 4555 Overlook Ave. Southwest, Washington, DC 20375, United States

2. 

Department of Mathematics & NanoCenter, University of South Carolina, Columbia, SC 29208

3. 

Department of Mathematical Sciences, Montana State University, P.O. Box 172400, Bozeman, MT 59717-2400, United States

Received  December 2009 Revised  March 2010 Published  December 2010

We develop a tri-component model for the biofilm and solvent mixture, in which the extracellular polymeric substance (EPS) network, bacteria and effective solvent consisting of the solvent, nutrient, drugs etc. are modeled explicitly. The tri-component mixture is assumed incompressible as a whole while inter-component mixing, dissipation, and conversion are allowed. A linear stability analysis is conducted on constant equilibria revealing up to two unstable modes corresponding to possible bacterial growth induced by the bacterial and EPS production and dependent upon the regime of the model parameters. A 1-D transient simulation is carried out to investigate the nonlinear dynamics of the EPS network, bacteria distribution, drug and nutrient distribution in a channel with and without shear. Finally, the transient biofilm dynamics are studied with respect to a host of diffusive properties of the drug and nutrient present in the biofilm.
Citation: Brandon Lindley, Qi Wang, Tianyu Zhang. A multicomponent model for biofilm-drug interaction. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 417-456. doi: 10.3934/dcdsb.2011.15.417
References:
[1]

G. C. Barker and M. J. Grimson, A cellular automaton model of microbial growth,, Binary Comput. Microbiol., 5 (1993), 132. Google Scholar

[2]

E. Ben-Jacob, O. Schochet, A. Tenenbaum, I. Cohen, A. Czirok and V. Tamas, Generic modelling of cooperative growth patterns in bacterial colonies,, Nature(London), 368 (1994), 46. doi: 10.1038/368046a0. Google Scholar

[3]

A. N. Beris and B. Edwards, "Thermodynamics of Flowing System,", Oxford University Press, (1994). Google Scholar

[4]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I: Interfacial free energy,, J. Chem. Phys., 28 (1958), 258. doi: 10.1063/1.1744102. Google Scholar

[5]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system-iii: Nucleation in a 2-component incompressible fluid,, J. Chem. Phys., 31 (1959), 688. doi: 10.1063/1.1730447. Google Scholar

[6]

N. G. Cogan and J. P. Keener, The role of the biofilm matrix in structural development,, Math. Med. Biol., 21 (2004), 147. doi: 10.1093/imammb/21.2.147. Google Scholar

[7]

R. L. Colasanti, Cellular automata models of microbial colonies,, Binary Comput. Microbiol., 4 (1992). Google Scholar

[8]

J. D. Dockery and I. Klapper, Finger formation in biofilm layers,, SIAM. J. Appl. Math., 62 (2001), 853. Google Scholar

[9]

H. J. Eberl, D. F. Parker and M. C. M. van Loosdrecht, A new deterministic spatio-temporal continuum model for biofilm development,, J. Theor. Mde., 3 (2001), 161. doi: 10.1080/10273660108833072. Google Scholar

[10]

P. J. Flory, "Principles of Polymer Chemistry,", Cornell University Press, (1953). Google Scholar

[11]

D. R. Noguera G. Pizarro and D. Griffeath, Quantative cellular automaton model for biofilms,, J. Environ. Eng., 127 (2001), 782. doi: 10.1061/(ASCE)0733-9372(2001)127:9(782). Google Scholar

[12]

S. W. Hermanowicz, A simple 2d biofilm model yields a variety of morphological features,, Math. Biosci., 169 (2001), 1. doi: 10.1016/S0025-5564(00)00049-3. Google Scholar

[13]

R. K. Hinson and W. M. Kocher, Model for effective diffusivities in aerobic biofilms,, Journal of Environmental Engineering, (1996), 1023. doi: 10.1061/(ASCE)0733-9372(1996)122:11(1023). Google Scholar

[14]

J. C. Kissel, P. L. McCarty and R. L. Street, Numerical simulation of mixed-culture biofilm,, J. Environ. Eng., 110 (1984), 393. doi: 10.1061/(ASCE)0733-9372(1984)110:2(393). Google Scholar

[15]

I. Klapper and J. Dockery, Role of cohesion in material description of biofilms,, Phys. Rev. E, 74 (2006). doi: 10.1103/PhysRevE.74.031902. Google Scholar

[16]

C. Picioreanu, M. C. Loosdrecht and J. J. Heijnen, Discrete-differential modelling of biofilm structure,, Wat. Sci. Tech., 39 (1999), 115. doi: 10.1016/S0273-1223(99)00158-4. Google Scholar

[17]

C. Picioreanu, M. C. Loosdrecht and J. J. Heijnen, Effect of diffusive and convective substrate transport on biofilm structure formation: a two-dimensional modeling study,, Biotech. Bioeng., 69 (2000), 504. doi: 10.1002/1097-0290(20000905)69:5<504::AID-BIT5>3.0.CO;2-S. Google Scholar

[18]

C. Picioreanu, M. C. Loosdrecht and J. J. Heijnen, Two-dimensional model of biofilm detachment caused by internal stress from liquid flow,, Biotech. Bioeng., 72 (2001), 205. doi: 10.1002/1097-0290(20000120)72:2<205::AID-BIT9>3.0.CO;2-L. Google Scholar

[19]

C. Picioreanu, M. C. M. Loosdrecht and J. J. Heijnen, A new combined differential-discrete cellular automaton approach for biofilm modeling: Application for growth in gel beads,, Biotech. Bioeng., 57 (1998), 718. doi: 10.1002/(SICI)1097-0290(19980320)57:6<718::AID-BIT9>3.0.CO;2-O. Google Scholar

[20]

G. Pizarro, R. Moreno C. Garcia and M. E. Sepulveda, Two-dimensional cellular automaton model for mixed-culture biofilm,, Wat. Sci. Tech., 49 (2004), 193. Google Scholar

[21]

B. E. Rittmann, The effect of shear stress on biofilm loss rate,, Biotech. Bioeng., 24 (1982), 501. doi: 10.1002/bit.260240219. Google Scholar

[22]

B. E. Rittmann and P. L. McCarty, Evaluation of steady-state biofilm kinetics,, Biotech. Bioeng., 22 (1980), 2359. doi: 10.1002/bit.260221111. Google Scholar

[23]

B. E. Rittmann and P. L. McCarty, Model of steady-state-biofilm kinetics,, Biotech. Bioeng., 22 (1980), 2243. Google Scholar

[24]

Q. Wang and T. Zhang, Review of mathematical models for biofilms,, Communication in Solid State Physics, (2010). Google Scholar

[25]

O. Wanner and W. Gujer, Competition in biofilms,, Wat. Sci. Tech., 17 (1984), 27. Google Scholar

[26]

O. Wanner and W. Gujer, A multispecies biofilm model,, Wat. Sci. Tech., 28 (1986), 314. Google Scholar

[27]

J. W. T. Wimpenny and R. Colasanti, A unifying hypothesis for the structure of microbial biofilms based on cellular automaton models,, FEMS Micro. Ecol., 22 (1997), 1. doi: 10.1111/j.1574-6941.1997.tb00351.x. Google Scholar

[28]

T. Zhang, N. Cogan and Q. Wang, Phase-field models for biofilms I. theory and simulations,, SIAM, 69 (2008), 641. doi: 10.1137/070691966. Google Scholar

[29]

T. Zhang, N. Cogan and Q. Wang, Phase-field models for biofilms II. 2-d numerical simulations of biofilm-flow interaction,, Commun. Comput. Phys., 4 (2008), 72. Google Scholar

show all references

References:
[1]

G. C. Barker and M. J. Grimson, A cellular automaton model of microbial growth,, Binary Comput. Microbiol., 5 (1993), 132. Google Scholar

[2]

E. Ben-Jacob, O. Schochet, A. Tenenbaum, I. Cohen, A. Czirok and V. Tamas, Generic modelling of cooperative growth patterns in bacterial colonies,, Nature(London), 368 (1994), 46. doi: 10.1038/368046a0. Google Scholar

[3]

A. N. Beris and B. Edwards, "Thermodynamics of Flowing System,", Oxford University Press, (1994). Google Scholar

[4]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I: Interfacial free energy,, J. Chem. Phys., 28 (1958), 258. doi: 10.1063/1.1744102. Google Scholar

[5]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system-iii: Nucleation in a 2-component incompressible fluid,, J. Chem. Phys., 31 (1959), 688. doi: 10.1063/1.1730447. Google Scholar

[6]

N. G. Cogan and J. P. Keener, The role of the biofilm matrix in structural development,, Math. Med. Biol., 21 (2004), 147. doi: 10.1093/imammb/21.2.147. Google Scholar

[7]

R. L. Colasanti, Cellular automata models of microbial colonies,, Binary Comput. Microbiol., 4 (1992). Google Scholar

[8]

J. D. Dockery and I. Klapper, Finger formation in biofilm layers,, SIAM. J. Appl. Math., 62 (2001), 853. Google Scholar

[9]

H. J. Eberl, D. F. Parker and M. C. M. van Loosdrecht, A new deterministic spatio-temporal continuum model for biofilm development,, J. Theor. Mde., 3 (2001), 161. doi: 10.1080/10273660108833072. Google Scholar

[10]

P. J. Flory, "Principles of Polymer Chemistry,", Cornell University Press, (1953). Google Scholar

[11]

D. R. Noguera G. Pizarro and D. Griffeath, Quantative cellular automaton model for biofilms,, J. Environ. Eng., 127 (2001), 782. doi: 10.1061/(ASCE)0733-9372(2001)127:9(782). Google Scholar

[12]

S. W. Hermanowicz, A simple 2d biofilm model yields a variety of morphological features,, Math. Biosci., 169 (2001), 1. doi: 10.1016/S0025-5564(00)00049-3. Google Scholar

[13]

R. K. Hinson and W. M. Kocher, Model for effective diffusivities in aerobic biofilms,, Journal of Environmental Engineering, (1996), 1023. doi: 10.1061/(ASCE)0733-9372(1996)122:11(1023). Google Scholar

[14]

J. C. Kissel, P. L. McCarty and R. L. Street, Numerical simulation of mixed-culture biofilm,, J. Environ. Eng., 110 (1984), 393. doi: 10.1061/(ASCE)0733-9372(1984)110:2(393). Google Scholar

[15]

I. Klapper and J. Dockery, Role of cohesion in material description of biofilms,, Phys. Rev. E, 74 (2006). doi: 10.1103/PhysRevE.74.031902. Google Scholar

[16]

C. Picioreanu, M. C. Loosdrecht and J. J. Heijnen, Discrete-differential modelling of biofilm structure,, Wat. Sci. Tech., 39 (1999), 115. doi: 10.1016/S0273-1223(99)00158-4. Google Scholar

[17]

C. Picioreanu, M. C. Loosdrecht and J. J. Heijnen, Effect of diffusive and convective substrate transport on biofilm structure formation: a two-dimensional modeling study,, Biotech. Bioeng., 69 (2000), 504. doi: 10.1002/1097-0290(20000905)69:5<504::AID-BIT5>3.0.CO;2-S. Google Scholar

[18]

C. Picioreanu, M. C. Loosdrecht and J. J. Heijnen, Two-dimensional model of biofilm detachment caused by internal stress from liquid flow,, Biotech. Bioeng., 72 (2001), 205. doi: 10.1002/1097-0290(20000120)72:2<205::AID-BIT9>3.0.CO;2-L. Google Scholar

[19]

C. Picioreanu, M. C. M. Loosdrecht and J. J. Heijnen, A new combined differential-discrete cellular automaton approach for biofilm modeling: Application for growth in gel beads,, Biotech. Bioeng., 57 (1998), 718. doi: 10.1002/(SICI)1097-0290(19980320)57:6<718::AID-BIT9>3.0.CO;2-O. Google Scholar

[20]

G. Pizarro, R. Moreno C. Garcia and M. E. Sepulveda, Two-dimensional cellular automaton model for mixed-culture biofilm,, Wat. Sci. Tech., 49 (2004), 193. Google Scholar

[21]

B. E. Rittmann, The effect of shear stress on biofilm loss rate,, Biotech. Bioeng., 24 (1982), 501. doi: 10.1002/bit.260240219. Google Scholar

[22]

B. E. Rittmann and P. L. McCarty, Evaluation of steady-state biofilm kinetics,, Biotech. Bioeng., 22 (1980), 2359. doi: 10.1002/bit.260221111. Google Scholar

[23]

B. E. Rittmann and P. L. McCarty, Model of steady-state-biofilm kinetics,, Biotech. Bioeng., 22 (1980), 2243. Google Scholar

[24]

Q. Wang and T. Zhang, Review of mathematical models for biofilms,, Communication in Solid State Physics, (2010). Google Scholar

[25]

O. Wanner and W. Gujer, Competition in biofilms,, Wat. Sci. Tech., 17 (1984), 27. Google Scholar

[26]

O. Wanner and W. Gujer, A multispecies biofilm model,, Wat. Sci. Tech., 28 (1986), 314. Google Scholar

[27]

J. W. T. Wimpenny and R. Colasanti, A unifying hypothesis for the structure of microbial biofilms based on cellular automaton models,, FEMS Micro. Ecol., 22 (1997), 1. doi: 10.1111/j.1574-6941.1997.tb00351.x. Google Scholar

[28]

T. Zhang, N. Cogan and Q. Wang, Phase-field models for biofilms I. theory and simulations,, SIAM, 69 (2008), 641. doi: 10.1137/070691966. Google Scholar

[29]

T. Zhang, N. Cogan and Q. Wang, Phase-field models for biofilms II. 2-d numerical simulations of biofilm-flow interaction,, Commun. Comput. Phys., 4 (2008), 72. Google Scholar

[1]

José Luiz Boldrini, Gabriela Planas. A tridimensional phase-field model with convection for phase change of an alloy. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 429-450. doi: 10.3934/dcds.2005.13.429

[2]

Ken Shirakawa. Stability for steady-state patterns in phase field dynamics associated with total variation energies. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1215-1236. doi: 10.3934/dcds.2006.15.1215

[3]

Maciek D. Korzec, Hao Wu. Analysis and simulation for an isotropic phase-field model describing grain growth. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2227-2246. doi: 10.3934/dcdsb.2014.19.2227

[4]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[5]

Yongli Cai, Yun Kang, Weiming Wang. Global stability of the steady states of an epidemic model incorporating intervention strategies. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1071-1089. doi: 10.3934/mbe.2017056

[6]

Yan'e Wang, Jianhua Wu. Stability of positive constant steady states and their bifurcation in a biological depletion model. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 849-865. doi: 10.3934/dcdsb.2011.15.849

[7]

Maurizio Grasselli, Giulio Schimperna. Nonlocal phase-field systems with general potentials. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5089-5106. doi: 10.3934/dcds.2013.33.5089

[8]

Federico Mario Vegni. Dissipativity of a conserved phase-field system with memory. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 949-968. doi: 10.3934/dcds.2003.9.949

[9]

Nobuyuki Kenmochi, Noriaki Yamazaki. Global attractor of the multivalued semigroup associated with a phase-field model of grain boundary motion with constraint. Conference Publications, 2011, 2011 (Special) : 824-833. doi: 10.3934/proc.2011.2011.824

[10]

Alain Miranville, Elisabetta Rocca, Giulio Schimperna, Antonio Segatti. The Penrose-Fife phase-field model with coupled dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4259-4290. doi: 10.3934/dcds.2014.34.4259

[11]

Antonio DeSimone, Martin Kružík. Domain patterns and hysteresis in phase-transforming solids: Analysis and numerical simulations of a sharp interface dissipative model via phase-field approximation. Networks & Heterogeneous Media, 2013, 8 (2) : 481-499. doi: 10.3934/nhm.2013.8.481

[12]

Alain Miranville, Costică Moroşanu. Analysis of an iterative scheme of fractional steps type associated to the nonlinear phase-field equation with non-homogeneous dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 537-556. doi: 10.3934/dcdss.2016011

[13]

Chun-Hao Teng, I-Liang Chern, Ming-Chih Lai. Simulating binary fluid-surfactant dynamics by a phase field model. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1289-1307. doi: 10.3934/dcdsb.2012.17.1289

[14]

Honghu Liu. Phase transitions of a phase field model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 883-894. doi: 10.3934/dcdsb.2011.16.883

[15]

Maurizio Grasselli, Hao Wu. Robust exponential attractors for the modified phase-field crystal equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2539-2564. doi: 10.3934/dcds.2015.35.2539

[16]

Claudio Giorgi. Phase-field models for transition phenomena in materials with hysteresis. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 693-722. doi: 10.3934/dcdss.2015.8.693

[17]

Zhenhua Zhang. Asymptotic behavior of solutions to the phase-field equations with neumann boundary conditions. Communications on Pure & Applied Analysis, 2005, 4 (3) : 683-693. doi: 10.3934/cpaa.2005.4.683

[18]

Sergiu Aizicovici, Hana Petzeltová. Convergence to equilibria of solutions to a conserved Phase-Field system with memory. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 1-16. doi: 10.3934/dcdss.2009.2.1

[19]

S. Gatti, M. Grasselli, V. Pata, M. Squassina. Robust exponential attractors for a family of nonconserved phase-field systems with memory. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 1019-1029. doi: 10.3934/dcds.2005.12.1019

[20]

P.K. Galenko, E.V. Abramova, D.M. Herlach. Phase-field study of solute trapping effect in rapid solidification. Conference Publications, 2011, 2011 (Special) : 457-466. doi: 10.3934/proc.2011.2011.457

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]