March  2011, 15(2): 475-490. doi: 10.3934/dcdsb.2011.15.475

One order parameter tensor mean field theory for biaxial liquid crystals

1. 

Department of Mathematical Sciences, Kent State University, Kent, OH 44242, United States

2. 

Liquid Crystal Institute, Kent State University, Kent, Oh 44242, United States

Received  November 2009 Revised  February 2010 Published  December 2010

In this paper, we present a simple one tensor mean field model of biaxial nematic liquid crystals. The salient feature of our approach is that material parameters appear explicitly in the order parameter tensor. We construct the free energy from a mean field potential based on anisotropic dispersion interactions, identify the order parameter tensor and its elements, and obtain self-consistent equations, which are then solved numerically. The results are illustrated in a 3D ternary phase diagram. The phase behavior can be simply related to molecular parameters. The results may be useful for designing molecules that show a thermotropic biaxial phase.
Citation: Xiaoyu Zheng, Peter Palffy-Muhoray. One order parameter tensor mean field theory for biaxial liquid crystals. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 475-490. doi: 10.3934/dcdsb.2011.15.475
References:
[1]

B. R. Acharya, A. Primak and S. Kumar, Biaxial nematic phase in bent-core thermotropic mesogens,, Phys. Rev. Lett., 92 (2004).  doi: 10.1103/PhysRevLett.92.145506.  Google Scholar

[2]

R. Alben, Phase transitions in a fluid of biaxial particles,, Phys. Rev. Lett., 30 (1973), 778.  doi: 10.1103/PhysRevLett.30.778.  Google Scholar

[3]

D. W. Allender and M. A. Lee, Landau theory of biaxial nematic liquid crystals,, Mol. Cryst. Liq. Cryst., 110 (1984), 331.  doi: 10.1080/00268948408074514.  Google Scholar

[4]

D. Allender and L. Longa, Landau-de Gennes theory for biaxial nematics reexamined,, Phy. Rev. E, 78 (2008).  doi: 10.1103/PhysRevE.78.011704.  Google Scholar

[5]

J. Ball,  , Private Communication., ().   Google Scholar

[6]

M. A. Bates, Influence of flexibility on the biaxial nematic phase of bent core liquid crystals: A Monte Carlo simulation study,, Phys. Rev. E, 74 (2006).  doi: 10.1103/PhysRevE.74.061702.  Google Scholar

[7]

R. Berardi and C. Zannoni, Do thermotropic biaxial nematics exist? A Monte Carlo study of biaxial Gay-Berne particles,, J. Chem. Phys., 113 (2000), 5971.  doi: 10.1063/1.1290474.  Google Scholar

[8]

B. Bergersen, P. Palffy-Muhoray and D. A. Dunmur, Uniaxial nematic phase in fluids of biaxial particles,, Liq. Cryst., 3 (1988), 347.  doi: 10.1080/02678298808086380.  Google Scholar

[9]

P. Biscari, M. C. Calderer and E. M. Terentjev, Landau-de Gennes theory of isotropic-nematic-smectic liquid crystal transitions,, Phys. Rev. E, 75 (2007).  doi: 10.1103/PhysRevE.75.051707.  Google Scholar

[10]

F. Biscarini, C. Chiccoli, P. Pasini, F. Semeria and C. Zannoni, Phase diagram and orientational order in a biaxial lattice model: A Monte Carlo study,, Phy. Rev. Lett., 75 (1995), 1803.  doi: 10.1103/PhysRevLett.75.1803.  Google Scholar

[11]

F. Bisi, E. G. Virga, E. C. Garland, Jr., G. De Matteis, A. M. Sonnet and G. E. Durand, Universal mean-field phase diagram for biaxial nematics obtained from a minmax priniciple,, Phys. Rev. E, 73 (2006).  doi: 10.1103/PhysRevE.73.051709.  Google Scholar

[12]

C. G. Broyden, A class of methods for solving nonlinear simultaneous equations,, Math. Comput., 19 (1965), 577.  doi: 10.1090/S0025-5718-1965-0198670-6.  Google Scholar

[13]

P. J. Camp and M. P. Allen, Phase diagram of the hard biaxial ellipsoid fluid,, J. Chem. Phys., 106 (1997), 6681.  doi: 10.1063/1.473665.  Google Scholar

[14]

C. Chiccoli, P. Pasini, F. Semeria and C. Zannoni, A detailed Monte Carlo investigation of the tricritical region of a biaxial liquid crystal system,, Int. J. Mod. Phys. C, 10 (1999), 469.  doi: 10.1142/S0129183199000358.  Google Scholar

[15]

P. G. de Gennes, "The Physics of Liquid Crystals,", Clarendon Press, (1974).   Google Scholar

[16]

G. De Matties, S. Romano and E. G. Virga, Bifurcation analysis and computer simulation of biaxial liquid crystals,, Phys. Rev. E, 72 (2005).  doi: 10.1103/PhysRevE.72.041706.  Google Scholar

[17]

G. De Matties, A. M. Sonnet and E. G. Virga, Landau theory for biaxial nematic liquid crystals with two order parameter tensors,, Continuum Mech. Thermodyn., 20 (2008), 347.  doi: 10.1007/s00161-008-0086-9.  Google Scholar

[18]

R. Ennis, "Pattern Formation in Liquid Crystals: The Saffman-Taylor Instability and the Dynamics of Phase Separation,", Ph.D. dissetation, (2004).   Google Scholar

[19]

M. J. Freiser, Ordered states of a nematic liquid,, Phys. Rev. Lett., 24 (1970), 1041.  doi: 10.1103/PhysRevLett.24.1041.  Google Scholar

[20]

M. J. Freiser, Successive transitions in a nematic liquid,, Mol. Cryst. Liq. Cryst., 14 (1971), 165.   Google Scholar

[21]

W. M. Gelbart and B. A. Baron, Generalized van der Waals theory of the isotropic-nematic phase transition,, J. Chem. Phys., 66 (1977), 207.  doi: 10.1063/1.433665.  Google Scholar

[22]

J. Israelachvili, "Intermolecular & Surface Forces,", Academic Press, (1992).   Google Scholar

[23]

L. Longa and G. Pajak, Luckhurst-Romano model of thermotropic biaxial nematic phase,, Liq. Cryst., 32 (2005), 1409.  doi: 10.1080/02678290500167873.  Google Scholar

[24]

L. Longa, P. Grzybowski, S. Romano and E. Virga, Minimal coupling model of the biaxial nematic phase,, Phys. Rev. E, 71 (2005).  doi: 10.1103/PhysRevE.71.051714.  Google Scholar

[25]

G. R. Luckhurst and S. Romano, Computer simulation studies of anisotropic systems II. Uniaxial and biaxial nematics formed by non-cylindrically symmetric molecules,, Mol. Phys., 40 (1980), 129.  doi: 10.1080/00268978000101341.  Google Scholar

[26]

L. A. Madsen, T. J. Dingemans, M. Nakata and E. T. Samulski, Thermotropic biaxial nematic liquid crystals,, Phys. Rev. Lett., 92 (2004).  doi: 10.1103/PhysRevLett.92.145505.  Google Scholar

[27]

W. Maier and A. Saupe, A simple molecular theory of the namatic liquid-crystalline state,, Zeischrift Naturforschung, 13 (1958), 564.   Google Scholar

[28]

K. Merkel, A. Kocot, J. K. Vij, R. Korlacki, G. H. Mehl and T. Meyer, Thermotropic biaxial nematic phase in liquid crystalline organo-siloxane tetrapodes,, Phys. Rev. Lett., 93 (2004).  doi: 10.1103/PhysRevLett.93.237801.  Google Scholar

[29]

P. K. Mukherjee, Improved analysis of the Landau theory of the uniaxail-biaxial nematic phase transition,, Liq. Cryst., 24 (1998), 519.  doi: 10.1080/026782998206966.  Google Scholar

[30]

B. M. Mulder, Solution of the excluded volume problem for biaxial particles,, Liq. Cryst., 1 (1986), 539.  doi: 10.1080/02678298608086278.  Google Scholar

[31]

P. Palffy-Muhoray, The single particle potential in mean-field theory,, Am. J. Phys., 70 (2002), 433.  doi: 10.1119/1.1446860.  Google Scholar

[32]

P. Palffy-Muhoray and B. Bergersen, van der Waals theory for nematic liquid crystals,, Phys. Rev. A, 35 (1987).  doi: 10.1103/PhysRevA.35.2704.  Google Scholar

[33]

S. Sarman, Molecular dynamics of biaxial nematic liquid crystals,, J. Chem. Phys., 104 (1996), 342.  doi: 10.1063/1.470833.  Google Scholar

[34]

C. S. Shih and R. Alben, Lattice model for biaxial liquid crystals,, J. Chem. Phys., 57 (1972), 3055.  doi: 10.1063/1.1678719.  Google Scholar

[35]

S. Sircar and Q. Wang, Shear-induced mesostructures in biaxial liquid crystals,, Phy. Rev. E, 78 (2008).  doi: 10.1103/PhysRevE.78.061702.  Google Scholar

[36]

S. Sircar and Q. Wang, Dynamics and rheology of biaxial liquid crystal polymers in shear flows,, J. Rheol., 53 (2009), 819.  doi: 10.1122/1.3143788.  Google Scholar

[37]

A. M. Sonnet, E. G. Virga and G. E. Durand, Dielectric shape dispersion and biaxial transitions in nematic liquid crystals,, Phys. Rev. E, 67 (2003).  doi: 10.1103/PhysRevE.67.061701.  Google Scholar

[38]

A. M. Sonnet and E. G. Virga, Steric effects in dispersion forces interactions,, Phys. Rev. E, 77 (2008).  doi: 10.1103/PhysRevE.77.031704.  Google Scholar

[39]

J. P. Straley, Ordered phases of a liquid of biaxial particles,, Phy. Rev. A, 10 (1974), 1881.  doi: 10.1103/PhysRevA.10.1881.  Google Scholar

[40]

M. C. J. M. Vissenberg, S. Stallinga and G. Vertogen, Generalized Landau-de Gennes theory of uniaxial and biaxial nematic liquid crystals,, Phy. Rev. E, 55 (1997), 4367.  doi: 10.1103/PhysRevE.55.4367.  Google Scholar

[41]

L. J. Yu and A. Saupe, Observation of a biaxial nematic Phase in potassium Laurate-1-Decanol-Water mixtures,, Phys. Rev. Lett., 45 (1980), 1000.  doi: 10.1103/PhysRevLett.45.1000.  Google Scholar

show all references

References:
[1]

B. R. Acharya, A. Primak and S. Kumar, Biaxial nematic phase in bent-core thermotropic mesogens,, Phys. Rev. Lett., 92 (2004).  doi: 10.1103/PhysRevLett.92.145506.  Google Scholar

[2]

R. Alben, Phase transitions in a fluid of biaxial particles,, Phys. Rev. Lett., 30 (1973), 778.  doi: 10.1103/PhysRevLett.30.778.  Google Scholar

[3]

D. W. Allender and M. A. Lee, Landau theory of biaxial nematic liquid crystals,, Mol. Cryst. Liq. Cryst., 110 (1984), 331.  doi: 10.1080/00268948408074514.  Google Scholar

[4]

D. Allender and L. Longa, Landau-de Gennes theory for biaxial nematics reexamined,, Phy. Rev. E, 78 (2008).  doi: 10.1103/PhysRevE.78.011704.  Google Scholar

[5]

J. Ball,  , Private Communication., ().   Google Scholar

[6]

M. A. Bates, Influence of flexibility on the biaxial nematic phase of bent core liquid crystals: A Monte Carlo simulation study,, Phys. Rev. E, 74 (2006).  doi: 10.1103/PhysRevE.74.061702.  Google Scholar

[7]

R. Berardi and C. Zannoni, Do thermotropic biaxial nematics exist? A Monte Carlo study of biaxial Gay-Berne particles,, J. Chem. Phys., 113 (2000), 5971.  doi: 10.1063/1.1290474.  Google Scholar

[8]

B. Bergersen, P. Palffy-Muhoray and D. A. Dunmur, Uniaxial nematic phase in fluids of biaxial particles,, Liq. Cryst., 3 (1988), 347.  doi: 10.1080/02678298808086380.  Google Scholar

[9]

P. Biscari, M. C. Calderer and E. M. Terentjev, Landau-de Gennes theory of isotropic-nematic-smectic liquid crystal transitions,, Phys. Rev. E, 75 (2007).  doi: 10.1103/PhysRevE.75.051707.  Google Scholar

[10]

F. Biscarini, C. Chiccoli, P. Pasini, F. Semeria and C. Zannoni, Phase diagram and orientational order in a biaxial lattice model: A Monte Carlo study,, Phy. Rev. Lett., 75 (1995), 1803.  doi: 10.1103/PhysRevLett.75.1803.  Google Scholar

[11]

F. Bisi, E. G. Virga, E. C. Garland, Jr., G. De Matteis, A. M. Sonnet and G. E. Durand, Universal mean-field phase diagram for biaxial nematics obtained from a minmax priniciple,, Phys. Rev. E, 73 (2006).  doi: 10.1103/PhysRevE.73.051709.  Google Scholar

[12]

C. G. Broyden, A class of methods for solving nonlinear simultaneous equations,, Math. Comput., 19 (1965), 577.  doi: 10.1090/S0025-5718-1965-0198670-6.  Google Scholar

[13]

P. J. Camp and M. P. Allen, Phase diagram of the hard biaxial ellipsoid fluid,, J. Chem. Phys., 106 (1997), 6681.  doi: 10.1063/1.473665.  Google Scholar

[14]

C. Chiccoli, P. Pasini, F. Semeria and C. Zannoni, A detailed Monte Carlo investigation of the tricritical region of a biaxial liquid crystal system,, Int. J. Mod. Phys. C, 10 (1999), 469.  doi: 10.1142/S0129183199000358.  Google Scholar

[15]

P. G. de Gennes, "The Physics of Liquid Crystals,", Clarendon Press, (1974).   Google Scholar

[16]

G. De Matties, S. Romano and E. G. Virga, Bifurcation analysis and computer simulation of biaxial liquid crystals,, Phys. Rev. E, 72 (2005).  doi: 10.1103/PhysRevE.72.041706.  Google Scholar

[17]

G. De Matties, A. M. Sonnet and E. G. Virga, Landau theory for biaxial nematic liquid crystals with two order parameter tensors,, Continuum Mech. Thermodyn., 20 (2008), 347.  doi: 10.1007/s00161-008-0086-9.  Google Scholar

[18]

R. Ennis, "Pattern Formation in Liquid Crystals: The Saffman-Taylor Instability and the Dynamics of Phase Separation,", Ph.D. dissetation, (2004).   Google Scholar

[19]

M. J. Freiser, Ordered states of a nematic liquid,, Phys. Rev. Lett., 24 (1970), 1041.  doi: 10.1103/PhysRevLett.24.1041.  Google Scholar

[20]

M. J. Freiser, Successive transitions in a nematic liquid,, Mol. Cryst. Liq. Cryst., 14 (1971), 165.   Google Scholar

[21]

W. M. Gelbart and B. A. Baron, Generalized van der Waals theory of the isotropic-nematic phase transition,, J. Chem. Phys., 66 (1977), 207.  doi: 10.1063/1.433665.  Google Scholar

[22]

J. Israelachvili, "Intermolecular & Surface Forces,", Academic Press, (1992).   Google Scholar

[23]

L. Longa and G. Pajak, Luckhurst-Romano model of thermotropic biaxial nematic phase,, Liq. Cryst., 32 (2005), 1409.  doi: 10.1080/02678290500167873.  Google Scholar

[24]

L. Longa, P. Grzybowski, S. Romano and E. Virga, Minimal coupling model of the biaxial nematic phase,, Phys. Rev. E, 71 (2005).  doi: 10.1103/PhysRevE.71.051714.  Google Scholar

[25]

G. R. Luckhurst and S. Romano, Computer simulation studies of anisotropic systems II. Uniaxial and biaxial nematics formed by non-cylindrically symmetric molecules,, Mol. Phys., 40 (1980), 129.  doi: 10.1080/00268978000101341.  Google Scholar

[26]

L. A. Madsen, T. J. Dingemans, M. Nakata and E. T. Samulski, Thermotropic biaxial nematic liquid crystals,, Phys. Rev. Lett., 92 (2004).  doi: 10.1103/PhysRevLett.92.145505.  Google Scholar

[27]

W. Maier and A. Saupe, A simple molecular theory of the namatic liquid-crystalline state,, Zeischrift Naturforschung, 13 (1958), 564.   Google Scholar

[28]

K. Merkel, A. Kocot, J. K. Vij, R. Korlacki, G. H. Mehl and T. Meyer, Thermotropic biaxial nematic phase in liquid crystalline organo-siloxane tetrapodes,, Phys. Rev. Lett., 93 (2004).  doi: 10.1103/PhysRevLett.93.237801.  Google Scholar

[29]

P. K. Mukherjee, Improved analysis of the Landau theory of the uniaxail-biaxial nematic phase transition,, Liq. Cryst., 24 (1998), 519.  doi: 10.1080/026782998206966.  Google Scholar

[30]

B. M. Mulder, Solution of the excluded volume problem for biaxial particles,, Liq. Cryst., 1 (1986), 539.  doi: 10.1080/02678298608086278.  Google Scholar

[31]

P. Palffy-Muhoray, The single particle potential in mean-field theory,, Am. J. Phys., 70 (2002), 433.  doi: 10.1119/1.1446860.  Google Scholar

[32]

P. Palffy-Muhoray and B. Bergersen, van der Waals theory for nematic liquid crystals,, Phys. Rev. A, 35 (1987).  doi: 10.1103/PhysRevA.35.2704.  Google Scholar

[33]

S. Sarman, Molecular dynamics of biaxial nematic liquid crystals,, J. Chem. Phys., 104 (1996), 342.  doi: 10.1063/1.470833.  Google Scholar

[34]

C. S. Shih and R. Alben, Lattice model for biaxial liquid crystals,, J. Chem. Phys., 57 (1972), 3055.  doi: 10.1063/1.1678719.  Google Scholar

[35]

S. Sircar and Q. Wang, Shear-induced mesostructures in biaxial liquid crystals,, Phy. Rev. E, 78 (2008).  doi: 10.1103/PhysRevE.78.061702.  Google Scholar

[36]

S. Sircar and Q. Wang, Dynamics and rheology of biaxial liquid crystal polymers in shear flows,, J. Rheol., 53 (2009), 819.  doi: 10.1122/1.3143788.  Google Scholar

[37]

A. M. Sonnet, E. G. Virga and G. E. Durand, Dielectric shape dispersion and biaxial transitions in nematic liquid crystals,, Phys. Rev. E, 67 (2003).  doi: 10.1103/PhysRevE.67.061701.  Google Scholar

[38]

A. M. Sonnet and E. G. Virga, Steric effects in dispersion forces interactions,, Phys. Rev. E, 77 (2008).  doi: 10.1103/PhysRevE.77.031704.  Google Scholar

[39]

J. P. Straley, Ordered phases of a liquid of biaxial particles,, Phy. Rev. A, 10 (1974), 1881.  doi: 10.1103/PhysRevA.10.1881.  Google Scholar

[40]

M. C. J. M. Vissenberg, S. Stallinga and G. Vertogen, Generalized Landau-de Gennes theory of uniaxial and biaxial nematic liquid crystals,, Phy. Rev. E, 55 (1997), 4367.  doi: 10.1103/PhysRevE.55.4367.  Google Scholar

[41]

L. J. Yu and A. Saupe, Observation of a biaxial nematic Phase in potassium Laurate-1-Decanol-Water mixtures,, Phys. Rev. Lett., 45 (1980), 1000.  doi: 10.1103/PhysRevLett.45.1000.  Google Scholar

[1]

Thierry Paul, Mario Pulvirenti. Asymptotic expansion of the mean-field approximation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1891-1921. doi: 10.3934/dcds.2019080

[2]

Apala Majumdar. The Landau-de Gennes theory of nematic liquid crystals: Uniaxiality versus Biaxiality. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1303-1337. doi: 10.3934/cpaa.2012.11.1303

[3]

Wenya Ma, Yihang Hao, Xiangao Liu. Shape optimization in compressible liquid crystals. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1623-1639. doi: 10.3934/cpaa.2015.14.1623

[4]

Yuming Chu, Yihang Hao, Xiangao Liu. Global weak solutions to a general liquid crystals system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2681-2710. doi: 10.3934/dcds.2013.33.2681

[5]

Carlos J. García-Cervera, Sookyung Joo. Reorientation of smectic a liquid crystals by magnetic fields. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1983-2000. doi: 10.3934/dcdsb.2015.20.1983

[6]

Jinhae Park, Feng Chen, Jie Shen. Modeling and simulation of switchings in ferroelectric liquid crystals. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1419-1440. doi: 10.3934/dcds.2010.26.1419

[7]

Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Isotropic-nematic phase transitions in liquid crystals. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 565-579. doi: 10.3934/dcdss.2011.4.565

[8]

Franco Flandoli, Matti Leimbach. Mean field limit with proliferation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3029-3052. doi: 10.3934/dcdsb.2016086

[9]

Chun Liu. Dynamic theory for incompressible Smectic-A liquid crystals: Existence and regularity. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 591-608. doi: 10.3934/dcds.2000.6.591

[10]

Xiaoli Li. Global strong solution for the incompressible flow of liquid crystals with vacuum in dimension two. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4907-4922. doi: 10.3934/dcds.2017211

[11]

Geng Chen, Ping Zhang, Yuxi Zheng. Energy conservative solutions to a nonlinear wave system of nematic liquid crystals. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1445-1468. doi: 10.3934/cpaa.2013.12.1445

[12]

Xian-Gao Liu, Jie Qing. Globally weak solutions to the flow of compressible liquid crystals system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 757-788. doi: 10.3934/dcds.2013.33.757

[13]

Kyungkeun Kang, Jinhae Park. Partial regularity of minimum energy configurations in ferroelectric liquid crystals. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1499-1511. doi: 10.3934/dcds.2013.33.1499

[14]

Patricia Bauman, Daniel Phillips, Jinhae Park. Existence of solutions to boundary value problems for smectic liquid crystals. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 243-257. doi: 10.3934/dcdss.2015.8.243

[15]

Xian-Gao Liu, Jianzhong Min, Kui Wang, Xiaotao Zhang. Serrin's regularity results for the incompressible liquid crystals system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5579-5594. doi: 10.3934/dcds.2016045

[16]

Fanghua Lin, Chun Liu. Partial regularity of the dynamic system modeling the flow of liquid crystals. Discrete & Continuous Dynamical Systems - A, 1996, 2 (1) : 1-22. doi: 10.3934/dcds.1996.2.1

[17]

Tiziana Giorgi, Feras Yousef. Analysis of a model for bent-core liquid crystals columnar phases. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2001-2026. doi: 10.3934/dcdsb.2015.20.2001

[18]

Shijin Ding, Changyou Wang, Huanyao Wen. Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 357-371. doi: 10.3934/dcdsb.2011.15.357

[19]

Shijin Ding, Junyu Lin, Changyou Wang, Huanyao Wen. Compressible hydrodynamic flow of liquid crystals in 1-D. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 539-563. doi: 10.3934/dcds.2012.32.539

[20]

Boling Guo, Yongqian Han, Guoli Zhou. Random attractor for the 2D stochastic nematic liquid crystals flows. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2349-2376. doi: 10.3934/cpaa.2019106

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]