December  2011, 15(3): 573-596. doi: 10.3934/dcdsb.2011.15.573

Well-posedness and stability analysis for a moving boundary problem modelling the growth of nonnecrotic tumors

1. 

Institute for Applied Mathematics, Leibniz University Hanover, Welfengarten 1, 30167 Hanover, Germany, Germany

Received  February 2010 Revised  April 2010 Published  February 2011

We study a moving boundary problem describing the growth of nonnecrotic tumors in different regimes of vascularisation. This model consists of two decoupled Dirichlet problem, one for the rate at which nutrient is added to the tumor domain and one for the pressure inside the tumor. These variables are coupled by a relation which describes the dynamic of the boundary. By re-expressing the problem as an abstract evolution equation, we prove local well-posedness in the small Hölder spaces context. Further on, we use the principle of linearised stability to characterise the stability properties of the unique radially symmetric equilibrium of the problem.
Citation: Joachim Escher, Anca-Voichita Matioc. Well-posedness and stability analysis for a moving boundary problem modelling the growth of nonnecrotic tumors. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 573-596. doi: 10.3934/dcdsb.2011.15.573
References:
[1]

H. Amann, "Linear and Quasilinear Parabolic Problems," Volume I Birkhäuser, Basel, 1995.

[2]

W. Arendt and S. Bu, Operator-valued Fourier multipliers on periodic Besov spaces and applications, Proceedings of the Edinburgh Mathematical Society, 47 (2004), 15-33. doi: 10.1017/S0013091502000378.

[3]

N. Bellomo, N. K. Li and P. K. Maini, On the foundations of cancer modelling: Selected topics, speculations, and perspectives, Mathematical Models and Methods in Applied Sciences, 18 (2008), 593-647. doi: 10.1142/S0218202508002796.

[4]

A. Borisovich and A. Friedman, Symmetric-breaking bifurcation for free boundary problems, Indiana Univ. Math. J., 54 (2005), 927-947. doi: 10.1512/iumj.2005.54.2473.

[5]

H. M. Byrne and M. A. Chaplain, Growth of nonnecrotic tumors in the presence and absence of inhibitors, Math. Biosci., 130 (1995), 151-181. doi: 10.1016/0025-5564(94)00117-3.

[6]

V. Cristini, J. Lowengrub and Q. Nie, Nonlinear simulation of tumor growth, Journal of Mathematical Biology, 46 (2003), 191-224. doi: 10.1007/s00285-002-0174-6.

[7]

S. B. Cui, Analysis of a free boundary problem modeling tumor growth, Acta Mathematica Sinica, English Series, 21 (2005), 1071-1082. doi: 10.1007/s10114-004-0483-3.

[8]

S. B. Cui and J. Escher, Asymptotic behaviour of solutions of a multidimensional moving boundary problem modeling tumor growth, Comm. Part. Diff. Eq., 33 (2008), 636-655.

[9]

S. B. Cui and J. Escher, Bifurcation analysis of an elliptic free boundary problem modelling the growth of avascular tumors, SIAM J. Math. Anal., 39 (2007), 210-235. doi: 10.1137/060657509.

[10]

S. B. Cui and A. Friedman, A hyperbolic free boundary problem modelling tumor growth, Interface Free Bound, 5 (2003), 159-181. doi: 10.4171/IFB/76.

[11]

G. Da Prato and P. Grisvard, Equations d'évolution abstraites nonlinéaires de type parabolique, Ann. Mat. Pura Appl., 120 (1979), 329-326. doi: 10.1007/BF02411952.

[12]

J. Escher and A. V. Matioc, Radially symmetric growth of nonnecrotic tumors, Nonlinear Differential Equations and Applications, 17 (2010), 1-20. doi: 10.1007/s00030-009-0037-6.

[13]

J. Escher, A. V. Matioc and B. V. Matioc, Classical solutions and stability results for Stokesian Hele-Shaw flows, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 5, 9 (2010), 325-349.

[14]

A. Friedman and F. Reitich, Analysis of a mathematical model for the growth of tumors, J. Math. Biol., 38 (1999), 262-284. doi: 10.1007/s002850050149.

[15]

A. Friedman and F. Reitich, Symmetry-breaking bifurcation of analytic solutions to free boundary problems, Trans. Amer. Math. Soc., 353 (2001), 1587-1634. doi: 10.1090/S0002-9947-00-02715-X.

[16]

A. Friedman, Cancer models and their mathematical analysis, Lect. Notes Math., 1872 (2006), 223-246. doi: 10.1007/11561606_6.

[17]

D. Gilbarg and T. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Springer-Verlag, New York, 2001.

[18]

H. P. Greenspan, On the growth and stability of cell cultures and solid tumors, J. Theor. Biol., 56 (1976), 229-242. doi: 10.1016/S0022-5193(76)80054-9.

[19]

E. I. Hanzawa, Classical solutions of the Stefan problem, Tôhoku Math. J., 33 (1981), 297-335.

[20]

T. Kato, "Perturbation Theory for Linear Operators," Springer-Verlag, Berlin Heidelberg, 1995.

[21]

A. Lunardi, "Analytic Semigroups and Optimal Regularity in Parabolic Problems," Birkhäuser, Basel, 1995.

[22]

A. V. Matioc, "Modelling and Analysis of Nonnecrotic Tumors," Südwestdeutcher Verlag für Hochschulschriften, Saarbrücken, 2009.

[23]

E. Sinestrari, On the abstract Cauchy problem of parabolic type in spaces of continuous functions, Journal of Mathematical Analysis and Applications, 107 (1985), 16-66. doi: 10.1016/0022-247X(85)90353-1.

show all references

References:
[1]

H. Amann, "Linear and Quasilinear Parabolic Problems," Volume I Birkhäuser, Basel, 1995.

[2]

W. Arendt and S. Bu, Operator-valued Fourier multipliers on periodic Besov spaces and applications, Proceedings of the Edinburgh Mathematical Society, 47 (2004), 15-33. doi: 10.1017/S0013091502000378.

[3]

N. Bellomo, N. K. Li and P. K. Maini, On the foundations of cancer modelling: Selected topics, speculations, and perspectives, Mathematical Models and Methods in Applied Sciences, 18 (2008), 593-647. doi: 10.1142/S0218202508002796.

[4]

A. Borisovich and A. Friedman, Symmetric-breaking bifurcation for free boundary problems, Indiana Univ. Math. J., 54 (2005), 927-947. doi: 10.1512/iumj.2005.54.2473.

[5]

H. M. Byrne and M. A. Chaplain, Growth of nonnecrotic tumors in the presence and absence of inhibitors, Math. Biosci., 130 (1995), 151-181. doi: 10.1016/0025-5564(94)00117-3.

[6]

V. Cristini, J. Lowengrub and Q. Nie, Nonlinear simulation of tumor growth, Journal of Mathematical Biology, 46 (2003), 191-224. doi: 10.1007/s00285-002-0174-6.

[7]

S. B. Cui, Analysis of a free boundary problem modeling tumor growth, Acta Mathematica Sinica, English Series, 21 (2005), 1071-1082. doi: 10.1007/s10114-004-0483-3.

[8]

S. B. Cui and J. Escher, Asymptotic behaviour of solutions of a multidimensional moving boundary problem modeling tumor growth, Comm. Part. Diff. Eq., 33 (2008), 636-655.

[9]

S. B. Cui and J. Escher, Bifurcation analysis of an elliptic free boundary problem modelling the growth of avascular tumors, SIAM J. Math. Anal., 39 (2007), 210-235. doi: 10.1137/060657509.

[10]

S. B. Cui and A. Friedman, A hyperbolic free boundary problem modelling tumor growth, Interface Free Bound, 5 (2003), 159-181. doi: 10.4171/IFB/76.

[11]

G. Da Prato and P. Grisvard, Equations d'évolution abstraites nonlinéaires de type parabolique, Ann. Mat. Pura Appl., 120 (1979), 329-326. doi: 10.1007/BF02411952.

[12]

J. Escher and A. V. Matioc, Radially symmetric growth of nonnecrotic tumors, Nonlinear Differential Equations and Applications, 17 (2010), 1-20. doi: 10.1007/s00030-009-0037-6.

[13]

J. Escher, A. V. Matioc and B. V. Matioc, Classical solutions and stability results for Stokesian Hele-Shaw flows, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 5, 9 (2010), 325-349.

[14]

A. Friedman and F. Reitich, Analysis of a mathematical model for the growth of tumors, J. Math. Biol., 38 (1999), 262-284. doi: 10.1007/s002850050149.

[15]

A. Friedman and F. Reitich, Symmetry-breaking bifurcation of analytic solutions to free boundary problems, Trans. Amer. Math. Soc., 353 (2001), 1587-1634. doi: 10.1090/S0002-9947-00-02715-X.

[16]

A. Friedman, Cancer models and their mathematical analysis, Lect. Notes Math., 1872 (2006), 223-246. doi: 10.1007/11561606_6.

[17]

D. Gilbarg and T. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Springer-Verlag, New York, 2001.

[18]

H. P. Greenspan, On the growth and stability of cell cultures and solid tumors, J. Theor. Biol., 56 (1976), 229-242. doi: 10.1016/S0022-5193(76)80054-9.

[19]

E. I. Hanzawa, Classical solutions of the Stefan problem, Tôhoku Math. J., 33 (1981), 297-335.

[20]

T. Kato, "Perturbation Theory for Linear Operators," Springer-Verlag, Berlin Heidelberg, 1995.

[21]

A. Lunardi, "Analytic Semigroups and Optimal Regularity in Parabolic Problems," Birkhäuser, Basel, 1995.

[22]

A. V. Matioc, "Modelling and Analysis of Nonnecrotic Tumors," Südwestdeutcher Verlag für Hochschulschriften, Saarbrücken, 2009.

[23]

E. Sinestrari, On the abstract Cauchy problem of parabolic type in spaces of continuous functions, Journal of Mathematical Analysis and Applications, 107 (1985), 16-66. doi: 10.1016/0022-247X(85)90353-1.

[1]

Fujun Zhou, Shangbin Cui. Well-posedness and stability of a multidimensional moving boundary problem modeling the growth of tumor cord. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 929-943. doi: 10.3934/dcds.2008.21.929

[2]

Shihe Xu. Analysis of a delayed free boundary problem for tumor growth. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 293-308. doi: 10.3934/dcdsb.2011.15.293

[3]

Mircea Sofonea, Yi-bin Xiao. Tykhonov well-posedness of a viscoplastic contact problem. Evolution Equations and Control Theory, 2020, 9 (4) : 1167-1185. doi: 10.3934/eect.2020048

[4]

Boling Guo, Jun Wu. Well-posedness of the initial-boundary value problem for the fourth-order nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3749-3778. doi: 10.3934/dcdsb.2021205

[5]

Alberto Bressan, Michele Palladino. Well-posedness of a model for the growth of tree stems and vines. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 2047-2064. doi: 10.3934/dcds.2018083

[6]

Abraham Sylla. Influence of a slow moving vehicle on traffic: Well-posedness and approximation for a mildly nonlocal model. Networks and Heterogeneous Media, 2021, 16 (2) : 221-256. doi: 10.3934/nhm.2021005

[7]

Barbara Kaltenbacher, Irena Lasiecka. Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions. Conference Publications, 2011, 2011 (Special) : 763-773. doi: 10.3934/proc.2011.2011.763

[8]

Iñigo U. Erneta. Well-posedness for boundary value problems for coagulation-fragmentation equations. Kinetic and Related Models, 2020, 13 (4) : 815-835. doi: 10.3934/krm.2020028

[9]

George Avalos, Pelin G. Geredeli, Justin T. Webster. Semigroup well-posedness of a linearized, compressible fluid with an elastic boundary. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1267-1295. doi: 10.3934/dcdsb.2018151

[10]

Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control and Related Fields, 2011, 1 (1) : 61-81. doi: 10.3934/mcrf.2011.1.61

[11]

Zejia Wang, Suzhen Xu, Huijuan Song. Stationary solutions of a free boundary problem modeling growth of angiogenesis tumor with inhibitor. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2593-2605. doi: 10.3934/dcdsb.2018129

[12]

Shihe Xu, Yinhui Chen, Meng Bai. Analysis of a free boundary problem for avascular tumor growth with a periodic supply of nutrients. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 997-1008. doi: 10.3934/dcdsb.2016.21.997

[13]

Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387

[14]

Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic and Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032

[15]

Changyan Li, Hui Li. Well-posedness of the two-phase flow problem in incompressible MHD. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5609-5632. doi: 10.3934/dcds.2021090

[16]

Fujun Zhou, Junde Wu, Shangbin Cui. Existence and asymptotic behavior of solutions to a moving boundary problem modeling the growth of multi-layer tumors. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1669-1688. doi: 10.3934/cpaa.2009.8.1669

[17]

Xiaoqiang Dai, Shaohua Chen. Global well-posedness for the Cauchy problem of generalized Boussinesq equations in the control problem regarding initial data. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4201-4211. doi: 10.3934/dcdss.2021114

[18]

Hua Chen, Shaohua Wu. The moving boundary problem in a chemotaxis model. Communications on Pure and Applied Analysis, 2012, 11 (2) : 735-746. doi: 10.3934/cpaa.2012.11.735

[19]

K. Domelevo. Well-posedness of a kinetic model of dispersed two-phase flow with point-particles and stability of travelling waves. Discrete and Continuous Dynamical Systems - B, 2002, 2 (4) : 591-607. doi: 10.3934/dcdsb.2002.2.591

[20]

Stefan Meyer, Mathias Wilke. Global well-posedness and exponential stability for Kuznetsov's equation in $L_p$-spaces. Evolution Equations and Control Theory, 2013, 2 (2) : 365-378. doi: 10.3934/eect.2013.2.365

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (93)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]