December  2011, 15(3): 573-596. doi: 10.3934/dcdsb.2011.15.573

Well-posedness and stability analysis for a moving boundary problem modelling the growth of nonnecrotic tumors

1. 

Institute for Applied Mathematics, Leibniz University Hanover, Welfengarten 1, 30167 Hanover, Germany, Germany

Received  February 2010 Revised  April 2010 Published  February 2011

We study a moving boundary problem describing the growth of nonnecrotic tumors in different regimes of vascularisation. This model consists of two decoupled Dirichlet problem, one for the rate at which nutrient is added to the tumor domain and one for the pressure inside the tumor. These variables are coupled by a relation which describes the dynamic of the boundary. By re-expressing the problem as an abstract evolution equation, we prove local well-posedness in the small Hölder spaces context. Further on, we use the principle of linearised stability to characterise the stability properties of the unique radially symmetric equilibrium of the problem.
Citation: Joachim Escher, Anca-Voichita Matioc. Well-posedness and stability analysis for a moving boundary problem modelling the growth of nonnecrotic tumors. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 573-596. doi: 10.3934/dcdsb.2011.15.573
References:
[1]

H. Amann, "Linear and Quasilinear Parabolic Problems," Volume I, Birkhäuser, (1995). Google Scholar

[2]

W. Arendt and S. Bu, Operator-valued Fourier multipliers on periodic Besov spaces and applications,, Proceedings of the Edinburgh Mathematical Society, 47 (2004), 15. doi: 10.1017/S0013091502000378. Google Scholar

[3]

N. Bellomo, N. K. Li and P. K. Maini, On the foundations of cancer modelling: Selected topics, speculations, and perspectives,, Mathematical Models and Methods in Applied Sciences, 18 (2008), 593. doi: 10.1142/S0218202508002796. Google Scholar

[4]

A. Borisovich and A. Friedman, Symmetric-breaking bifurcation for free boundary problems,, Indiana Univ. Math. J., 54 (2005), 927. doi: 10.1512/iumj.2005.54.2473. Google Scholar

[5]

H. M. Byrne and M. A. Chaplain, Growth of nonnecrotic tumors in the presence and absence of inhibitors,, Math. Biosci., 130 (1995), 151. doi: 10.1016/0025-5564(94)00117-3. Google Scholar

[6]

V. Cristini, J. Lowengrub and Q. Nie, Nonlinear simulation of tumor growth,, Journal of Mathematical Biology, 46 (2003), 191. doi: 10.1007/s00285-002-0174-6. Google Scholar

[7]

S. B. Cui, Analysis of a free boundary problem modeling tumor growth,, Acta Mathematica Sinica, 21 (2005), 1071. doi: 10.1007/s10114-004-0483-3. Google Scholar

[8]

S. B. Cui and J. Escher, Asymptotic behaviour of solutions of a multidimensional moving boundary problem modeling tumor growth,, Comm. Part. Diff. Eq., 33 (2008), 636. Google Scholar

[9]

S. B. Cui and J. Escher, Bifurcation analysis of an elliptic free boundary problem modelling the growth of avascular tumors,, SIAM J. Math. Anal., 39 (2007), 210. doi: 10.1137/060657509. Google Scholar

[10]

S. B. Cui and A. Friedman, A hyperbolic free boundary problem modelling tumor growth,, Interface Free Bound, 5 (2003), 159. doi: 10.4171/IFB/76. Google Scholar

[11]

G. Da Prato and P. Grisvard, Equations d'évolution abstraites nonlinéaires de type parabolique,, Ann. Mat. Pura Appl., 120 (1979), 329. doi: 10.1007/BF02411952. Google Scholar

[12]

J. Escher and A. V. Matioc, Radially symmetric growth of nonnecrotic tumors,, Nonlinear Differential Equations and Applications, 17 (2010), 1. doi: 10.1007/s00030-009-0037-6. Google Scholar

[13]

J. Escher, A. V. Matioc and B. V. Matioc, Classical solutions and stability results for Stokesian Hele-Shaw flows,, Annali della Scuola Normale Superiore di Pisa, 9 (2010), 325. Google Scholar

[14]

A. Friedman and F. Reitich, Analysis of a mathematical model for the growth of tumors,, J. Math. Biol., 38 (1999), 262. doi: 10.1007/s002850050149. Google Scholar

[15]

A. Friedman and F. Reitich, Symmetry-breaking bifurcation of analytic solutions to free boundary problems,, Trans. Amer. Math. Soc., 353 (2001), 1587. doi: 10.1090/S0002-9947-00-02715-X. Google Scholar

[16]

A. Friedman, Cancer models and their mathematical analysis,, Lect. Notes Math., 1872 (2006), 223. doi: 10.1007/11561606_6. Google Scholar

[17]

D. Gilbarg and T. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Springer-Verlag, (2001). Google Scholar

[18]

H. P. Greenspan, On the growth and stability of cell cultures and solid tumors,, J. Theor. Biol., 56 (1976), 229. doi: 10.1016/S0022-5193(76)80054-9. Google Scholar

[19]

E. I. Hanzawa, Classical solutions of the Stefan problem,, Tôhoku Math. J., 33 (1981), 297. Google Scholar

[20]

T. Kato, "Perturbation Theory for Linear Operators,", Springer-Verlag, (1995). Google Scholar

[21]

A. Lunardi, "Analytic Semigroups and Optimal Regularity in Parabolic Problems,", Birkhäuser, (1995). Google Scholar

[22]

A. V. Matioc, "Modelling and Analysis of Nonnecrotic Tumors,", Südwestdeutcher Verlag für Hochschulschriften, (2009). Google Scholar

[23]

E. Sinestrari, On the abstract Cauchy problem of parabolic type in spaces of continuous functions,, Journal of Mathematical Analysis and Applications, 107 (1985), 16. doi: 10.1016/0022-247X(85)90353-1. Google Scholar

show all references

References:
[1]

H. Amann, "Linear and Quasilinear Parabolic Problems," Volume I, Birkhäuser, (1995). Google Scholar

[2]

W. Arendt and S. Bu, Operator-valued Fourier multipliers on periodic Besov spaces and applications,, Proceedings of the Edinburgh Mathematical Society, 47 (2004), 15. doi: 10.1017/S0013091502000378. Google Scholar

[3]

N. Bellomo, N. K. Li and P. K. Maini, On the foundations of cancer modelling: Selected topics, speculations, and perspectives,, Mathematical Models and Methods in Applied Sciences, 18 (2008), 593. doi: 10.1142/S0218202508002796. Google Scholar

[4]

A. Borisovich and A. Friedman, Symmetric-breaking bifurcation for free boundary problems,, Indiana Univ. Math. J., 54 (2005), 927. doi: 10.1512/iumj.2005.54.2473. Google Scholar

[5]

H. M. Byrne and M. A. Chaplain, Growth of nonnecrotic tumors in the presence and absence of inhibitors,, Math. Biosci., 130 (1995), 151. doi: 10.1016/0025-5564(94)00117-3. Google Scholar

[6]

V. Cristini, J. Lowengrub and Q. Nie, Nonlinear simulation of tumor growth,, Journal of Mathematical Biology, 46 (2003), 191. doi: 10.1007/s00285-002-0174-6. Google Scholar

[7]

S. B. Cui, Analysis of a free boundary problem modeling tumor growth,, Acta Mathematica Sinica, 21 (2005), 1071. doi: 10.1007/s10114-004-0483-3. Google Scholar

[8]

S. B. Cui and J. Escher, Asymptotic behaviour of solutions of a multidimensional moving boundary problem modeling tumor growth,, Comm. Part. Diff. Eq., 33 (2008), 636. Google Scholar

[9]

S. B. Cui and J. Escher, Bifurcation analysis of an elliptic free boundary problem modelling the growth of avascular tumors,, SIAM J. Math. Anal., 39 (2007), 210. doi: 10.1137/060657509. Google Scholar

[10]

S. B. Cui and A. Friedman, A hyperbolic free boundary problem modelling tumor growth,, Interface Free Bound, 5 (2003), 159. doi: 10.4171/IFB/76. Google Scholar

[11]

G. Da Prato and P. Grisvard, Equations d'évolution abstraites nonlinéaires de type parabolique,, Ann. Mat. Pura Appl., 120 (1979), 329. doi: 10.1007/BF02411952. Google Scholar

[12]

J. Escher and A. V. Matioc, Radially symmetric growth of nonnecrotic tumors,, Nonlinear Differential Equations and Applications, 17 (2010), 1. doi: 10.1007/s00030-009-0037-6. Google Scholar

[13]

J. Escher, A. V. Matioc and B. V. Matioc, Classical solutions and stability results for Stokesian Hele-Shaw flows,, Annali della Scuola Normale Superiore di Pisa, 9 (2010), 325. Google Scholar

[14]

A. Friedman and F. Reitich, Analysis of a mathematical model for the growth of tumors,, J. Math. Biol., 38 (1999), 262. doi: 10.1007/s002850050149. Google Scholar

[15]

A. Friedman and F. Reitich, Symmetry-breaking bifurcation of analytic solutions to free boundary problems,, Trans. Amer. Math. Soc., 353 (2001), 1587. doi: 10.1090/S0002-9947-00-02715-X. Google Scholar

[16]

A. Friedman, Cancer models and their mathematical analysis,, Lect. Notes Math., 1872 (2006), 223. doi: 10.1007/11561606_6. Google Scholar

[17]

D. Gilbarg and T. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Springer-Verlag, (2001). Google Scholar

[18]

H. P. Greenspan, On the growth and stability of cell cultures and solid tumors,, J. Theor. Biol., 56 (1976), 229. doi: 10.1016/S0022-5193(76)80054-9. Google Scholar

[19]

E. I. Hanzawa, Classical solutions of the Stefan problem,, Tôhoku Math. J., 33 (1981), 297. Google Scholar

[20]

T. Kato, "Perturbation Theory for Linear Operators,", Springer-Verlag, (1995). Google Scholar

[21]

A. Lunardi, "Analytic Semigroups and Optimal Regularity in Parabolic Problems,", Birkhäuser, (1995). Google Scholar

[22]

A. V. Matioc, "Modelling and Analysis of Nonnecrotic Tumors,", Südwestdeutcher Verlag für Hochschulschriften, (2009). Google Scholar

[23]

E. Sinestrari, On the abstract Cauchy problem of parabolic type in spaces of continuous functions,, Journal of Mathematical Analysis and Applications, 107 (1985), 16. doi: 10.1016/0022-247X(85)90353-1. Google Scholar

[1]

Fujun Zhou, Shangbin Cui. Well-posedness and stability of a multidimensional moving boundary problem modeling the growth of tumor cord. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 929-943. doi: 10.3934/dcds.2008.21.929

[2]

Shihe Xu. Analysis of a delayed free boundary problem for tumor growth. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 293-308. doi: 10.3934/dcdsb.2011.15.293

[3]

Alberto Bressan, Michele Palladino. Well-posedness of a model for the growth of tree stems and vines. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2047-2064. doi: 10.3934/dcds.2018083

[4]

Barbara Kaltenbacher, Irena Lasiecka. Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions. Conference Publications, 2011, 2011 (Special) : 763-773. doi: 10.3934/proc.2011.2011.763

[5]

George Avalos, Pelin G. Geredeli, Justin T. Webster. Semigroup well-posedness of a linearized, compressible fluid with an elastic boundary. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1267-1295. doi: 10.3934/dcdsb.2018151

[6]

Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control & Related Fields, 2011, 1 (1) : 61-81. doi: 10.3934/mcrf.2011.1.61

[7]

Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387

[8]

Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic & Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032

[9]

Shihe Xu, Yinhui Chen, Meng Bai. Analysis of a free boundary problem for avascular tumor growth with a periodic supply of nutrients. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 997-1008. doi: 10.3934/dcdsb.2016.21.997

[10]

Zejia Wang, Suzhen Xu, Huijuan Song. Stationary solutions of a free boundary problem modeling growth of angiogenesis tumor with inhibitor. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2593-2605. doi: 10.3934/dcdsb.2018129

[11]

K. Domelevo. Well-posedness of a kinetic model of dispersed two-phase flow with point-particles and stability of travelling waves. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 591-607. doi: 10.3934/dcdsb.2002.2.591

[12]

Stefan Meyer, Mathias Wilke. Global well-posedness and exponential stability for Kuznetsov's equation in $L_p$-spaces. Evolution Equations & Control Theory, 2013, 2 (2) : 365-378. doi: 10.3934/eect.2013.2.365

[13]

Aissa Guesmia, Nasser-eddine Tatar. Some well-posedness and stability results for abstract hyperbolic equations with infinite memory and distributed time delay. Communications on Pure & Applied Analysis, 2015, 14 (2) : 457-491. doi: 10.3934/cpaa.2015.14.457

[14]

Ahmed Bchatnia, Aissa Guesmia. Well-posedness and asymptotic stability for the Lamé system with infinite memories in a bounded domain. Mathematical Control & Related Fields, 2014, 4 (4) : 451-463. doi: 10.3934/mcrf.2014.4.451

[15]

Jiang Xu. Well-posedness and stability of classical solutions to the multidimensional full hydrodynamic model for semiconductors. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1073-1092. doi: 10.3934/cpaa.2009.8.1073

[16]

Kenji Nakanishi, Hideo Takaoka, Yoshio Tsutsumi. Local well-posedness in low regularity of the MKDV equation with periodic boundary condition. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1635-1654. doi: 10.3934/dcds.2010.28.1635

[17]

Maxim A. Olshanskii, Leo G. Rebholz, Abner J. Salgado. On well-posedness of a velocity-vorticity formulation of the stationary Navier-Stokes equations with no-slip boundary conditions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3459-3477. doi: 10.3934/dcds.2018148

[18]

Vishal Vasan, Bernard Deconinck. Well-posedness of boundary-value problems for the linear Benjamin-Bona-Mahony equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3171-3188. doi: 10.3934/dcds.2013.33.3171

[19]

Elena Rossi. Well-posedness of general 1D initial boundary value problems for scalar balance laws. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3577-3608. doi: 10.3934/dcds.2019147

[20]

Fujun Zhou, Junde Wu, Shangbin Cui. Existence and asymptotic behavior of solutions to a moving boundary problem modeling the growth of multi-layer tumors. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1669-1688. doi: 10.3934/cpaa.2009.8.1669

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]