December  2011, 15(3): 597-621. doi: 10.3934/dcdsb.2011.15.597

Optimal transmission through a randomly perturbed waveguide in the localization regime

1. 

Laboratoire de Probabilités et Modèles Aléatoires & Laboratoire Jacques-Louis Lions, Université Paris VII, site Chevaleret, case 7012, 75205 Paris Cedex 13, France

Received  January 2010 Revised  July 2010 Published  February 2011

We demonstrate that increased power transmission through a random single-mode or multi-mode channel can be obtained in the localization regime by optimizing the spatial wave front or the time pulse profile of the source. The idea is to select and excite the few modes or the few frequencies whose transmission coefficients are anomalously large compared to the typical exponentially small value. We prove that time reversal is optimal for maximizing the transmitted intensity at a given time or space, while iterated time reversal is optimal for maximizing the total transmitted energy. The statistical stability of the optimal transmitted intensity and energy is also obtained.
Citation: Josselin Garnier. Optimal transmission through a randomly perturbed waveguide in the localization regime. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 597-621. doi: 10.3934/dcdsb.2011.15.597
References:
[1]

C. W. J. Beenakker, Random-matrix theory of quantum transport, Rev. Mod. Phys., 69 (1997), 731-808. arXiv:cond-mat/9612179">arXiv:cond-mat/9612179" target="_blank">arXiv:cond-mat/9612179

[2]

R. E. Collins, "Field Theory of Guided Waves," Mac Graw-Hill, New York, 1960.

[3]

O. N. Dorokhov, On the coexistence of localized and extended electronic states in the metallic phase, Solid State Commun., 51 (1984), 381-384. doi: 10.1016/0038-1098(84)90117-0.

[4]

J.-P. Fouque, J. Garnier, G. Papanicolaou and K. Sølna, "Wave Propagation and Time Reversal in Randomly Layered Media," Springer, New York, 2007.

[5]

J. Garnier, Multi-scaled diffusion-approximation Applications to wave propagation in random media, ESAIM Probab. Statist., 1 (1997), 183-206. doi: 10.1051/ps:1997107.

[6]

J. Garnier and G. Papanicolaou, Pulse propagation and time reversal in random waveguides, SIAM J. Appl. Math., 67 (2007), 1718-1739.

[7]

P. Gérard and E. Leichtnam, Ergodic properties of the eigenfunctions for the Dirichlet problem, Duke Math. Journal, 71 (1993), 559-607.

[8]

M. E. Gertsenshtein and V. B. Vasil'ev, Waveguides with random inhomogeneities and Brownian motion in the Lobachevsky plane, Theory Probab. Appl., 4 (1959), 391-398. doi: 10.1137/1104038.

[9]

Y. Imry, Active transmission channels and universal conductance fluctuations, Europhys. Lett., 1 (1986), 249. doi: 10.1209/0295-5075/1/5/008.

[10]

P. A. Mello, P. Pereyra and N. Kumar, Macroscopic approach to multichannel disordered conductors, Ann. Phys., 181 (1988), 290-317. doi: 10.1016/0003-4916(88)90169-8.

[11]

K. A. Muttalib, Random matrix theory and the scaling theory of localization, Phys. Rev. Lett., 64 (1990), 745-747. doi: 10.1103/PhysRevLett.65.745.

[12]

Y. V. Nazarov, Limits of universality in disordered conductors, Phys. Rev. Lett., 73 (1994), 134-137. doi: 10.1103/PhysRevLett.73.134.

[13]

G. C. Papanicolaou, Wave propagation in a one-dimensional random medium, SIAM J. Appl. Math., 21 (1971), 13-18. doi: 10.1137/0121002.

[14]

G. Papanicolaou, L. Ryzhik and K. Sølna, Statistical stability in time reversal, SIAM J. Appl. Math., 64 (2004), 1133-1155. doi: 10.1137/S0036139902411107.

[15]

G. Papanicolaou, L. Ryzhik and K. Sølna, Self-averaging from lateral diversity in the Itô-Schrödinger equation, SIAM Multiscale Model. Simul., 6 (2007), 468-492 (electronic). doi: 10.1137/060668882.

[16]

J. B. Pendry, A. MacKinnon and A. B. Pretre, Maximal fluctuations - a new phenomenon in disordered systems, Physica A, 168 (1990), 400-407. doi: 10.1016/0378-4371(90)90391-5.

[17]

J.-L. Pichard, N. Zanon, Y. Imry and A. D. Stone, Theory of random multiplicative transfer matrices and its implications for quantum transport, J. Phys., 51 (1990), 587-609.

[18]

I. M. Vellekoop and A. P. Mosk, Universal optimal transmission of light through disordered materials, Phys. Rev. Lett., 101 (2008), 120601. arXiv:0804.2412v2

[19]

I. M. Vellekoop and A. P. Mosk, Focusing coherent light through opaque strongly scattering media, Opt. Lett., 32 (2007), 2309-2311. doi: 10.1364/OL.32.002309.

[20]

S. Zelditch and M. Zworski, Ergodicity of eigenfunctions for ergodic billiards, Commun. Math. Phys., 175 (1996), 673-682. doi: 10.1007/BF02099513.

show all references

References:
[1]

C. W. J. Beenakker, Random-matrix theory of quantum transport, Rev. Mod. Phys., 69 (1997), 731-808. arXiv:cond-mat/9612179">arXiv:cond-mat/9612179" target="_blank">arXiv:cond-mat/9612179

[2]

R. E. Collins, "Field Theory of Guided Waves," Mac Graw-Hill, New York, 1960.

[3]

O. N. Dorokhov, On the coexistence of localized and extended electronic states in the metallic phase, Solid State Commun., 51 (1984), 381-384. doi: 10.1016/0038-1098(84)90117-0.

[4]

J.-P. Fouque, J. Garnier, G. Papanicolaou and K. Sølna, "Wave Propagation and Time Reversal in Randomly Layered Media," Springer, New York, 2007.

[5]

J. Garnier, Multi-scaled diffusion-approximation Applications to wave propagation in random media, ESAIM Probab. Statist., 1 (1997), 183-206. doi: 10.1051/ps:1997107.

[6]

J. Garnier and G. Papanicolaou, Pulse propagation and time reversal in random waveguides, SIAM J. Appl. Math., 67 (2007), 1718-1739.

[7]

P. Gérard and E. Leichtnam, Ergodic properties of the eigenfunctions for the Dirichlet problem, Duke Math. Journal, 71 (1993), 559-607.

[8]

M. E. Gertsenshtein and V. B. Vasil'ev, Waveguides with random inhomogeneities and Brownian motion in the Lobachevsky plane, Theory Probab. Appl., 4 (1959), 391-398. doi: 10.1137/1104038.

[9]

Y. Imry, Active transmission channels and universal conductance fluctuations, Europhys. Lett., 1 (1986), 249. doi: 10.1209/0295-5075/1/5/008.

[10]

P. A. Mello, P. Pereyra and N. Kumar, Macroscopic approach to multichannel disordered conductors, Ann. Phys., 181 (1988), 290-317. doi: 10.1016/0003-4916(88)90169-8.

[11]

K. A. Muttalib, Random matrix theory and the scaling theory of localization, Phys. Rev. Lett., 64 (1990), 745-747. doi: 10.1103/PhysRevLett.65.745.

[12]

Y. V. Nazarov, Limits of universality in disordered conductors, Phys. Rev. Lett., 73 (1994), 134-137. doi: 10.1103/PhysRevLett.73.134.

[13]

G. C. Papanicolaou, Wave propagation in a one-dimensional random medium, SIAM J. Appl. Math., 21 (1971), 13-18. doi: 10.1137/0121002.

[14]

G. Papanicolaou, L. Ryzhik and K. Sølna, Statistical stability in time reversal, SIAM J. Appl. Math., 64 (2004), 1133-1155. doi: 10.1137/S0036139902411107.

[15]

G. Papanicolaou, L. Ryzhik and K. Sølna, Self-averaging from lateral diversity in the Itô-Schrödinger equation, SIAM Multiscale Model. Simul., 6 (2007), 468-492 (electronic). doi: 10.1137/060668882.

[16]

J. B. Pendry, A. MacKinnon and A. B. Pretre, Maximal fluctuations - a new phenomenon in disordered systems, Physica A, 168 (1990), 400-407. doi: 10.1016/0378-4371(90)90391-5.

[17]

J.-L. Pichard, N. Zanon, Y. Imry and A. D. Stone, Theory of random multiplicative transfer matrices and its implications for quantum transport, J. Phys., 51 (1990), 587-609.

[18]

I. M. Vellekoop and A. P. Mosk, Universal optimal transmission of light through disordered materials, Phys. Rev. Lett., 101 (2008), 120601. arXiv:0804.2412v2

[19]

I. M. Vellekoop and A. P. Mosk, Focusing coherent light through opaque strongly scattering media, Opt. Lett., 32 (2007), 2309-2311. doi: 10.1364/OL.32.002309.

[20]

S. Zelditch and M. Zworski, Ergodicity of eigenfunctions for ergodic billiards, Commun. Math. Phys., 175 (1996), 673-682. doi: 10.1007/BF02099513.

[1]

Tzong-Yow Lee and Fred Torcaso. Wave propagation in a lattice KPP equation in random media. Electronic Research Announcements, 1997, 3: 121-125.

[2]

Chang-Yeol Jung, Alex Mahalov. Wave propagation in random waveguides. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 147-159. doi: 10.3934/dcds.2010.28.147

[3]

D. G. Aronson, N. V. Mantzaris, Hans Othmer. Wave propagation and blocking in inhomogeneous media. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 843-876. doi: 10.3934/dcds.2005.13.843

[4]

Stéphane Junca, Bruno Lombard. Stability of neutral delay differential equations modeling wave propagation in cracked media. Conference Publications, 2015, 2015 (special) : 678-685. doi: 10.3934/proc.2015.0678

[5]

Stephen Coombes, Helmut Schmidt, Carlo R. Laing, Nils Svanstedt, John A. Wyller. Waves in random neural media. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2951-2970. doi: 10.3934/dcds.2012.32.2951

[6]

Jakub Kantner, Michal Beneš. Mathematical model of signal propagation in excitable media. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 935-951. doi: 10.3934/dcdss.2020382

[7]

Andrey Shishkov, Laurent Véron. Propagation of singularities of nonlinear heat flow in fissured media. Communications on Pure and Applied Analysis, 2013, 12 (4) : 1769-1782. doi: 10.3934/cpaa.2013.12.1769

[8]

Daniel Bouche, Youngjoon Hong, Chang-Yeol Jung. Asymptotic analysis of the scattering problem for the Helmholtz equations with high wave numbers. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1159-1181. doi: 10.3934/dcds.2017048

[9]

Shangbing Ai, Wenzhang Huang, Zhi-An Wang. Reaction, diffusion and chemotaxis in wave propagation. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 1-21. doi: 10.3934/dcdsb.2015.20.1

[10]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[11]

Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329

[12]

S. Bonafede, G. R. Cirmi, A.F. Tedeev. Finite speed of propagation for the porous media equation with lower order terms. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 305-314. doi: 10.3934/dcds.2000.6.305

[13]

Matthieu Alfaro, Thomas Giletti. Varying the direction of propagation in reaction-diffusion equations in periodic media. Networks and Heterogeneous Media, 2016, 11 (3) : 369-393. doi: 10.3934/nhm.2016001

[14]

Shi-Liang Wu, Cheng-Hsiung Hsu. Propagation of monostable traveling fronts in discrete periodic media with delay. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 2987-3022. doi: 10.3934/dcds.2018128

[15]

Vincent Duchêne, Samer Israwi, Raafat Talhouk. Shallow water asymptotic models for the propagation of internal waves. Discrete and Continuous Dynamical Systems - S, 2014, 7 (2) : 239-269. doi: 10.3934/dcdss.2014.7.239

[16]

Fathi Dkhil, Angela Stevens. Traveling wave speeds in rapidly oscillating media. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 89-108. doi: 10.3934/dcds.2009.25.89

[17]

Andrew Homan. Multi-wave imaging in attenuating media. Inverse Problems and Imaging, 2013, 7 (4) : 1235-1250. doi: 10.3934/ipi.2013.7.1235

[18]

Patrick W. Dondl, Michael Scheutzow. Positive speed of propagation in a semilinear parabolic interface model with unbounded random coefficients. Networks and Heterogeneous Media, 2012, 7 (1) : 137-150. doi: 10.3934/nhm.2012.7.137

[19]

Guillaume Bal, Olivier Pinaud. Self-averaging of kinetic models for waves in random media. Kinetic and Related Models, 2008, 1 (1) : 85-100. doi: 10.3934/krm.2008.1.85

[20]

Guillaume Bal. Homogenization in random media and effective medium theory for high frequency waves. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 473-492. doi: 10.3934/dcdsb.2007.8.473

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]