Advanced Search
Article Contents
Article Contents

Global stability of SIR epidemic models with a wide class of nonlinear incidence rates and distributed delays

Abstract Related Papers Cited by
  • In this paper, we establish the global asymptotic stability of equilibria for an SIR model of infectious diseases with distributed time delays governed by a wide class of nonlinear incidence rates. We obtain the global properties of the model by proving the permanence and constructing a suitable Lyapunov functional. Under some suitable assumptions on the nonlinear term in the incidence rate, the global dynamics of the model is completely determined by the basic reproduction number $R_0$ and the distributed delays do not influence the global dynamics of the model.
    Mathematics Subject Classification: Primary: 34K20, 34K25; Secondary: 92D30.


    \begin{equation} \\ \end{equation}
  • [1]

    R. M. Anderson and R. M. May, Population biology of infectious diseases: Part I, Nature, 280 (1979), 361-367.doi: doi:10.1038/280361a0.


    E. Beretta and Y. Takeuchi, Convergence results in SIR epidemic models with varying population size, Nonlinear Anal., 28 (1997), 1909-1921.doi: doi:10.1016/S0362-546X(96)00035-1.


    G. C. Brown and R. Hasibuan, Conidial discharge and transmission efficiency of "Neozygites floridana," an entomopathogenic fungus infeccting two-spotted spider mites under laboratory conditions, J. Invertebr. Pathol., 65 (1995), 10-16.doi: doi:10.1006/jipa.1995.1002.


    V. Capasso and G. Serio, A generalization of the Kermack-Mckendrick deterministic epidemic model, Math. Biosci., 42 (1978), 43-61.doi: doi:10.1016/0025-5564(78)90006-8.


    K. L. Cooke, Stability analysis for a vector disease model, Rocky Mountain J. Math., 9 (1979), 31-42.doi: doi:10.1216/RMJ-1979-9-1-31.


    J. Hale and S. M. Verduyn Lunel, "Introduction to Functional Differential Equations," Springer-Verlag, 1993.


    H. W. Hethcote, Qualitative analyses of communicable disease models, Math. Biosci. 28 (1976), 335-356.doi: doi:10.1016/0025-5564(76)90132-2.


    H. W. Hethcote, The Mathematics of Infectious Diseases, SIAM Rev., 42 (2000), 599-653.


    G. Huang, Y. Takeuchi, W. Ma and D. Wei, Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate, Bull. Math. Biol., 72 (2010), 1192-1207.doi: doi:10.1007/s11538-009-9487-6.


    A. Korobeinikov and P. K. Maini, Nonlinear incidence and stability of infectious disease models, Math. Med. Biol., 22 (2005), 113-128.doi: doi:10.1093/imammb/dqi001.


    A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission, Bull. Math. Biol., 68 (2006), 615-626.doi: doi:10.1007/s11538-005-9037-9.


    A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence, Bull. Math. Biol., 69 (2007), 1871-1886.doi: doi:10.1007/s11538-007-9196-y.


    Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics," Academic Press, San Diego, 1993.


    J. LaSalle and S. Lefschetz, "Stability by Liapunov's Direct Method, with Applications," Mathematics in Science and Engineering, 4, Academic Press, New York-London, 1961.


    W. Ma, Y. Takeuchi, T. Hara and E. Beretta, Permanence of an SIR epidemic model with distributed delays, Tohoku. Math. J., 54 (2002), 581-591.doi: doi:10.2748/tmj/1113247650.


    W. Ma, M. Song and Y. Takeuchi, Global stability of an SIR epidemic model with time delay, Appl. Math. Lett., 17 (2004), 1141-1145.doi: doi:10.1016/j.aml.2003.11.005.


    C. C. McCluskey, Complete global stability for an SIR epidemic model with delay-Distributed or discrete, Nonl. Anal. RWA., 11 (2010), 55-59.doi: doi:10.1016/j.nonrwa.2008.10.014.


    C. C. McCluskey, Global stability for an SIR epidemic model with delay and nonlinear incidence, Nonl. Anal. RWA., 11 (2010), 3106-3109.doi: doi:10.1016/j.nonrwa.2009.11.005.


    M. Song, W. Ma and Y. Takeuchi, Permanence of a delayed SIR epidemic model with density dependent birth rate, J. Comp. Appl. Math., 201 (2007), 389-394.doi: doi:10.1016/j.cam.2005.12.039.


    Y. Takeuchi, W. Ma and E. Beretta, Global asymptotic properties of a delay $SIR$ epidemic model with finite incubation times, Nonlinear Anal., 42 (2000), 931-947.doi: doi:10.1016/S0362-546X(99)00138-8.


    W. Wang, Global behavior of an SEIRS epidemic model with time delays, Appl. Math. Lett., 15 (2002), 423-428.doi: doi:10.1016/S0893-9659(01)00153-7.


    R. Xu and Z. Ma, Global stability of a SIR epidemic model with nonlinear incidence rate and time delay, Nonl. Anal. RWA., 10 (2009), 3175-3189.doi: doi:10.1016/j.nonrwa.2008.10.013.

  • 加载中

Article Metrics

HTML views() PDF downloads(125) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint