December  2011, 15(3): 651-668. doi: 10.3934/dcdsb.2011.15.651

Adaptive method for spike solutions of Gierer-Meinhardt system on irregular domain

1. 

Department of Mathematics, Faculty of Science and Technology, University of Macau, Taipa, Macau, China

Received  January 2010 Revised  June 2010 Published  February 2011

In this paper, an adaptive numerical method is proposed to solve the Gierer-Meinhardt (GM) system on irregular domain. The method works for domains defined by level sets of implicit functions and the generated mesh is of high quality. The method is shown to be effective by comparing with asymptotic result. Boundary spike solutions of the GM system are obtained and studied numerically, including stability of boundary spike and spike motion along the boundary.
Citation: Siu-Long Lei. Adaptive method for spike solutions of Gierer-Meinhardt system on irregular domain. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 651-668. doi: 10.3934/dcdsb.2011.15.651
References:
[1]

G. Akrivis, M. Crouzeix and C. Makridakis, Implicit-explicit multistep finite element methods for nonlinear parabolic problems, Math. Comput., 67 (1998), 457-477. doi: 10.1090/S0025-5718-98-00930-2.

[2]

U. M. Ascher, S. J. Ruuth and B. T. R. Wetton, Implicit-explicit methods for time-dependent partial differential equations, SIAMJ. Numer. Anal., 32 (1995), 797-823. doi: 10.1137/0732037.

[3]

M. Berger and P. Colella, Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys., 82 (1989), 64-84. doi: 10.1016/0021-9991(89)90035-1.

[4]

J. Brackbill and J. Saltzman, Adaptive zoning for singular problems in two dimensions, J. Comput. Phys., 46 (1982), 342-368. doi: 10.1016/0021-9991(82)90020-1.

[5]

M. Del Pino, P. L. Felmer and M. Kowalczyk, Boundary spikes in the Gierer-Meinhardt system, Commun. Pure Appl. Anal., 1 (2002), 437-456. doi: 10.3934/cpaa.2002.1.437.

[6]

H. Edelsbrunner, "Geometry and Topology for Mesh Generation," Cambridge University Press, 2001. doi: 10.1017/CBO9780511530067.

[7]

N. I. M. Gould, J. A. Scott and Y. Hu, A numerical evaluation of sparse direct solvers for the solution of large sparse symmetric linear systems of equations, ACM Trans. Math. Softw., 33(2) (2007), Article 10. doi: 10.1145/1236463.1236465.

[8]

A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik (Berlin), 12 (1972), 30-39. doi: 10.1007/BF00289234.

[9]

W. Z. Huang and D. M. Sloan, A simple adaptive grid method in two dimensions, SIAM J. Sci. Comput., 15 (1994), 776-797. doi: 10.1137/0915049.

[10]

D. Iron and M. J. Ward, The dynamics of boundary spikes for a nonlocal reaction-diffusion model, Eur. J. of Appl. Math., 11 (2000), 491-514. doi: 10.1017/S0956792500004253.

[11]

R. Li, T. Tang and P. W. Zhang, Moving mesh methods in multiple dimensions based on harmonic maps, J. Comput. Phys., 170 (2001), 562-588. doi: 10.1006/jcph.2001.6749.

[12]

R. Li, T. Tang and P. W. Zhang, A moving mesh finite element algorithm for singular problems in two and three space dimensions, J. Comput. Phys., 177 (2002), 365-393. doi: 10.1006/jcph.2002.7002.

[13]

K. Miller and R. N. Miller, Moving finite elements I, SIAM J. Numer. Anal., 18 (1981), 1019-1032. doi: 10.1137/0718070.

[14]

R. Nicolaides, Direct discretization of planar div-curl problems, SIAM Numer. Anal., 29 (1992), 32-56. doi: 10.1137/0729003.

[15]

P. O. Persson, "Mesh Generation for Implicit Geometries," Ph.D thesis, MIT, 2005.

[16]

P. O. Persson and G. Strang, A simple mesh generation in Matlab, SIAM Rev., 46 (2004), 329-345. doi: 10.1137/S0036144503429121.

[17]

Z. Qiao, Numerical investigations of the dynamical behaviors and instabilities for the Gierer-Meinhardt system, Commun. Comput. Phys., 3 (2008), 406-426.

[18]

S. J. Ruuth, Implicit-explicit methods for reaction-diffusion problems in pattern formation, J. Math. Biol., 34 (1995), 148-176. doi: 10.1007/BF00178771.

[19]

W. Ren and X. P. Wang, An iterative grid redistribution method for singular problems in multiple dimensions, J. Comput. Phys., 159 (2000), 246-273. doi: 10.1006/jcph.2000.6435.

[20]

M. J. Ward, D. McInerney and P. Houston, The dynamics and pinning of a spike for a reaction-diffusion system, SIAM J. Appl. Math., 62 (2002), 1297-1328. doi: 10.1137/S0036139900375112.

[21]

J. Wei and M. Winter, Spikes for the two-dimensional Gierer-Meinhardt system: The weak coupling case, J. Nonlinear Sci., 11 (2001), 415-458. doi: 10.1007/s00332-001-0380-1.

show all references

References:
[1]

G. Akrivis, M. Crouzeix and C. Makridakis, Implicit-explicit multistep finite element methods for nonlinear parabolic problems, Math. Comput., 67 (1998), 457-477. doi: 10.1090/S0025-5718-98-00930-2.

[2]

U. M. Ascher, S. J. Ruuth and B. T. R. Wetton, Implicit-explicit methods for time-dependent partial differential equations, SIAMJ. Numer. Anal., 32 (1995), 797-823. doi: 10.1137/0732037.

[3]

M. Berger and P. Colella, Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys., 82 (1989), 64-84. doi: 10.1016/0021-9991(89)90035-1.

[4]

J. Brackbill and J. Saltzman, Adaptive zoning for singular problems in two dimensions, J. Comput. Phys., 46 (1982), 342-368. doi: 10.1016/0021-9991(82)90020-1.

[5]

M. Del Pino, P. L. Felmer and M. Kowalczyk, Boundary spikes in the Gierer-Meinhardt system, Commun. Pure Appl. Anal., 1 (2002), 437-456. doi: 10.3934/cpaa.2002.1.437.

[6]

H. Edelsbrunner, "Geometry and Topology for Mesh Generation," Cambridge University Press, 2001. doi: 10.1017/CBO9780511530067.

[7]

N. I. M. Gould, J. A. Scott and Y. Hu, A numerical evaluation of sparse direct solvers for the solution of large sparse symmetric linear systems of equations, ACM Trans. Math. Softw., 33(2) (2007), Article 10. doi: 10.1145/1236463.1236465.

[8]

A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik (Berlin), 12 (1972), 30-39. doi: 10.1007/BF00289234.

[9]

W. Z. Huang and D. M. Sloan, A simple adaptive grid method in two dimensions, SIAM J. Sci. Comput., 15 (1994), 776-797. doi: 10.1137/0915049.

[10]

D. Iron and M. J. Ward, The dynamics of boundary spikes for a nonlocal reaction-diffusion model, Eur. J. of Appl. Math., 11 (2000), 491-514. doi: 10.1017/S0956792500004253.

[11]

R. Li, T. Tang and P. W. Zhang, Moving mesh methods in multiple dimensions based on harmonic maps, J. Comput. Phys., 170 (2001), 562-588. doi: 10.1006/jcph.2001.6749.

[12]

R. Li, T. Tang and P. W. Zhang, A moving mesh finite element algorithm for singular problems in two and three space dimensions, J. Comput. Phys., 177 (2002), 365-393. doi: 10.1006/jcph.2002.7002.

[13]

K. Miller and R. N. Miller, Moving finite elements I, SIAM J. Numer. Anal., 18 (1981), 1019-1032. doi: 10.1137/0718070.

[14]

R. Nicolaides, Direct discretization of planar div-curl problems, SIAM Numer. Anal., 29 (1992), 32-56. doi: 10.1137/0729003.

[15]

P. O. Persson, "Mesh Generation for Implicit Geometries," Ph.D thesis, MIT, 2005.

[16]

P. O. Persson and G. Strang, A simple mesh generation in Matlab, SIAM Rev., 46 (2004), 329-345. doi: 10.1137/S0036144503429121.

[17]

Z. Qiao, Numerical investigations of the dynamical behaviors and instabilities for the Gierer-Meinhardt system, Commun. Comput. Phys., 3 (2008), 406-426.

[18]

S. J. Ruuth, Implicit-explicit methods for reaction-diffusion problems in pattern formation, J. Math. Biol., 34 (1995), 148-176. doi: 10.1007/BF00178771.

[19]

W. Ren and X. P. Wang, An iterative grid redistribution method for singular problems in multiple dimensions, J. Comput. Phys., 159 (2000), 246-273. doi: 10.1006/jcph.2000.6435.

[20]

M. J. Ward, D. McInerney and P. Houston, The dynamics and pinning of a spike for a reaction-diffusion system, SIAM J. Appl. Math., 62 (2002), 1297-1328. doi: 10.1137/S0036139900375112.

[21]

J. Wei and M. Winter, Spikes for the two-dimensional Gierer-Meinhardt system: The weak coupling case, J. Nonlinear Sci., 11 (2001), 415-458. doi: 10.1007/s00332-001-0380-1.

[1]

Shin-Ichiro Ei, Kota Ikeda, Yasuhito Miyamoto. Dynamics of a boundary spike for the shadow Gierer-Meinhardt system. Communications on Pure and Applied Analysis, 2012, 11 (1) : 115-145. doi: 10.3934/cpaa.2012.11.115

[2]

Manuel del Pino, Patricio Felmer, Michal Kowalczyk. Boundary spikes in the Gierer-Meinhardt system. Communications on Pure and Applied Analysis, 2002, 1 (4) : 437-456. doi: 10.3934/cpaa.2002.1.437

[3]

Juncheng Wei, Matthias Winter. On the Gierer-Meinhardt system with precursors. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 363-398. doi: 10.3934/dcds.2009.25.363

[4]

Theodore Kolokolnikov, Michael J. Ward. Bifurcation of spike equilibria in the near-shadow Gierer-Meinhardt model. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 1033-1064. doi: 10.3934/dcdsb.2004.4.1033

[5]

Henghui Zou. On global existence for the Gierer-Meinhardt system. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 583-591. doi: 10.3934/dcds.2015.35.583

[6]

Georgia Karali, Takashi Suzuki, Yoshio Yamada. Global-in-time behavior of the solution to a Gierer-Meinhardt system. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2885-2900. doi: 10.3934/dcds.2013.33.2885

[7]

Kota Ikeda. The existence and uniqueness of unstable eigenvalues for stripe patterns in the Gierer-Meinhardt system. Networks and Heterogeneous Media, 2013, 8 (1) : 291-325. doi: 10.3934/nhm.2013.8.291

[8]

Nabil T. Fadai, Michael J. Ward, Juncheng Wei. A time-delay in the activator kinetics enhances the stability of a spike solution to the gierer-meinhardt model. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1431-1458. doi: 10.3934/dcdsb.2018158

[9]

Nancy Khalil, David Iron, Theodore Kolokolnikov. Stability and dynamics of spike-type solutions to delayed Gierer-Meinhardt equations. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022117

[10]

Rui Peng, Xianfa Song, Lei Wei. Existence, nonexistence and uniqueness of positive stationary solutions of a singular Gierer-Meinhardt system. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4489-4505. doi: 10.3934/dcds.2017192

[11]

Kazuhiro Kurata, Kotaro Morimoto. Construction and asymptotic behavior of multi-peak solutions to the Gierer-Meinhardt system with saturation. Communications on Pure and Applied Analysis, 2008, 7 (6) : 1443-1482. doi: 10.3934/cpaa.2008.7.1443

[12]

Mengxin Chen, Ranchao Wu, Yancong Xu. Dynamics of a depletion-type Gierer-Meinhardt model with Langmuir-Hinshelwood reaction scheme. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2275-2312. doi: 10.3934/dcdsb.2021132

[13]

Jan-Phillip Bäcker, Matthias Röger. Analysis and asymptotic reduction of a bulk-surface reaction-diffusion model of Gierer-Meinhardt type. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1139-1155. doi: 10.3934/cpaa.2022013

[14]

Nahid Banihashemi, C. Yalçın Kaya. Inexact restoration and adaptive mesh refinement for optimal control. Journal of Industrial and Management Optimization, 2014, 10 (2) : 521-542. doi: 10.3934/jimo.2014.10.521

[15]

Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora. A leaky integrate-and-fire model with adaptation for the generation of a spike train. Mathematical Biosciences & Engineering, 2016, 13 (3) : 483-493. doi: 10.3934/mbe.2016002

[16]

Zheng-Ru Zhang, Tao Tang. An adaptive mesh redistribution algorithm for convection-dominated problems. Communications on Pure and Applied Analysis, 2002, 1 (3) : 341-357. doi: 10.3934/cpaa.2002.1.341

[17]

Luís Tiago Paiva, Fernando A. C. C. Fontes. Adaptive time--mesh refinement in optimal control problems with state constraints. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4553-4572. doi: 10.3934/dcds.2015.35.4553

[18]

Rongjie Lai, Jiang Liang, Hong-Kai Zhao. A local mesh method for solving PDEs on point clouds. Inverse Problems and Imaging, 2013, 7 (3) : 737-755. doi: 10.3934/ipi.2013.7.737

[19]

Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124

[20]

Luís Tiago Paiva, Fernando A. C. C. Fontes. Sampled–data model predictive control: Adaptive time–mesh refinement algorithms and guarantees of stability. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2335-2364. doi: 10.3934/dcdsb.2019098

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (91)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]