December  2011, 15(3): 669-686. doi: 10.3934/dcdsb.2011.15.669

On the effects of migration and inter-specific competitions in steady state of some Lotka-Volterra model

1. 

Department of Mathematics, Purdue University, 150 N. University St., West Lafayette, IN 47907, United States

2. 

Department of mathematics, East China Normal University, 500 Dong Chuan Road, Shanghai 200241

3. 

Institute of Mathematics, Hangzhou Dianzi Universitye, Xiasha Hangzhou Zhejiang 310018

Received  January 2010 Revised  March 2010 Published  February 2011

Shadow systems are often used to approximate reaction-diffusion systems when one of the diffusion rates is large. In this paper, we investigate in a shadow system the effects of migration and interspecific competition coefficients on the existence of positive solutions. Our study shows that for any given migration, if the interspecific competition coefficient of the invader is small, then the shadow system has coexistence state; otherwise we can always find some migration such that it has no coexistence state. Moreover, these findings can be applied to steady state of a two-species Lotka-Volterra competition-diffusion model. Particularly, we show that if the interspecific competition coefficient of the invader is sufficiently small, then rapid diffusion of the invader can drive to coexistence state.
Citation: Fang Li, Liping Wang, Yang Wang. On the effects of migration and inter-specific competitions in steady state of some Lotka-Volterra model. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 669-686. doi: 10.3934/dcdsb.2011.15.669
References:
[1]

J. M. Arrieta, A. N. Carvalho and A. Rodriguez-Bernal, Upper semicontinuity for attractors of parabolic problems with localized large diffusion and nonlinear boundary conditions,, J. Diff. Eqs., 168 (2000), 33. Google Scholar

[2]

R. S. Cantrell and C. Cosner, The effect of spatial heterogeneity in population dynamics,, J. Math. Biol., 29 (1991), 315. doi: 10.1007/BF00167155. Google Scholar

[3]

R. S. Cantrell and C. Cosner, Should a park be an island?,, SIAM J. Appl. Math., 53 (1993), 219. doi: 10.1137/0153014. Google Scholar

[4]

R. S. Cantrell and C. Cosner, On the effects of spatial heterogeneity on the persistence of interacting species,, J. Math. Biol., 37 (1998), 103. doi: 10.1007/s002850050122. Google Scholar

[5]

R. S. Cantrell and C. Cosner, "Spatial Ecology Via Reaction-Diffusion Equations,", Series in Mathematical and Computational Biology, (2003). Google Scholar

[6]

R. S. Cantrell, C. Cosner and V. Huston, Permanence in ecological systems with diffusion,, Proc. Roy. Soc. Edinburgh A, 123 (1993), 553. Google Scholar

[7]

R. S. Cantrell, C. Cosner and V. Huston, Ecological models, permanence and spatial heterogeneity,, Rocky Mount. J. Math., 26 (1996), 1. doi: 10.1216/rmjm/1181072101. Google Scholar

[8]

R. S. Cantrell, C. Cosner and Y. Lou, Multiple reversals of competitive dominance in ecological reserves via external habitat degradation,, J. Dynam. Differential Equations, 16 (2004), 973. doi: 10.1007/s10884-004-7831-y. Google Scholar

[9]

A. N. Carvalho and J. K. Hale, Large diffusion with dispersion,, Nonlinear Anal., 17 (1991), 1139. doi: 10.1016/0362-546X(91)90233-Q. Google Scholar

[10]

Y. S. Choi, R. Lui and Y. Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with weak cross-diffusion,, Disc. Cont. Dyn. Syst. A, 9 (2003), 1193. doi: 10.3934/dcds.2003.9.1193. Google Scholar

[11]

E. Conway, D. Hoff and J. Smoller, Large time behavior of solutions of systems of nonlinear reaction-diffusion equations,, SIAM J. Appl. Math., 35 (1978), 1. doi: 10.1137/0135001. Google Scholar

[12]

J. Dockery, V. Hutson, K. Mischaikow and M. Pernarowski, The evolution of slow dispersal rates: A reaction-diffusion equations,, J. Math. Biol., 37 (1998), 61. doi: 10.1007/s002850050120. Google Scholar

[13]

Y. Du, Effects of a degeneracy in the competition model, Part I. Classical and generalized steady-state solutions,, J. Differential Equations, 181 (2002), 92. doi: 10.1006/jdeq.2001.4074. Google Scholar

[14]

Y. Du, Effects of a degeneracy in the competition model, Part II. Perturbation and dynamical behavior,, J. Differential Equations, 181 (2002), 133. doi: 10.1006/jdeq.2001.4075. Google Scholar

[15]

Y. Du, Realization of prescribed patterns in the competition model,, J. Differential Equations, 193 (2003), 147. doi: 10.1016/S0022-0396(03)00056-1. Google Scholar

[16]

J. E. Furter and J. López-Gómez, Diffusion-mediated permanence problem for a heterogeneous Lotka-Volterra competition model,, Proc. Roy. Soc. Edinburgh A, 127 (1997), 281. Google Scholar

[17]

J. K. Hale, Large diffusivity and asymptotic behavior in parabolic system,, J. Math. Anal. Appl., 118 (1986), 455. doi: 10.1016/0022-247X(86)90273-8. Google Scholar

[18]

A. Hastings, Spatial heterogeneity and ecological models,, Ecology, 71 (1990), 426. doi: 10.2307/1940296. Google Scholar

[19]

E. E. Holmes, M. A. Lewis, J. E. Banks and R. R. Veit, Partial differential equations in ecology: Spatial interactions and population dynamics,, Ecology, 75 (1994), 17. doi: 10.2307/1939378. Google Scholar

[20]

V. Hutson, J. López-Gómez, K. Mischaikow and G. Vickers, Limit behavior for a competing species problem with diffusion, in Dynamical Systems and applications,, World Scientific Series Applicable Analysis, 4 (1995), 343. Google Scholar

[21]

V. Hutson, Y. Lou and K. Mischaikow, Spatial heterogeneity of resources versus Lotka-Volterra dynamics,, J. Differential Equations, 185 (2002), 97. doi: 10.1006/jdeq.2001.4157. Google Scholar

[22]

V. Hutson, Y. Lou and K. Mischaikow, Convergence in competition models with small diffusion coefficients,, J. Differential Equations, 211 (2005), 135. doi: 10.1016/j.jde.2004.06.003. Google Scholar

[23]

V. Hutson, Y. Lou, K. Mischaikow and P. Poláčik, Competing species near the degenerate limit,, SIAM J. Math. Anal., 35 (2003), 453. doi: 10.1137/S0036141002402189. Google Scholar

[24]

V. Hutson, S. Martinez, K. Mischaikow and G. T. Vicker, The evolution of dispersal,, J. Math. Biol., 47 (2003), 483. doi: 10.1007/s00285-003-0210-1. Google Scholar

[25]

V. Hutson, K. Mischaikow and P. Poláčik, The evolution of dispersal rates in a heterogeneous time-periodic environment,, J. Math. Biol., 43 (2001), 501. doi: 10.1007/s002850100106. Google Scholar

[26]

M. Iida, M. Mimura and H. Ninomiya, Diffusion, cross-diffusion and competitive interaction,, J. Math. Biol., 53 (2006), 617. doi: 10.1007/s00285-006-0013-2. Google Scholar

[27]

M. Iida, M. Tatsuya, H, Ninomiya and E. Yanagida, Diffusion-induced extinction of a superior species in a competition system,, Japan J. Indust. Appl. Math., 15 (1998), 223. doi: 10.1007/BF03167402. Google Scholar

[28]

J. Jiang, X. Liang and X. Zhao, Saddle point behavior for monotone semiflows and reaction-diffusion models,, J. Differential Equations, 203 (2004), 313. doi: 10.1016/j.jde.2004.05.002. Google Scholar

[29]

S. Kirkland, C. K. Li and S. J. Schreiber, On the evolution of dispersal in patchy environments,, SIAM J. Appl. Math., 66 (2006), 1366. doi: 10.1137/050628933. Google Scholar

[30]

J. López-Gómez, Coexistence and meta-coexistence for competing species,, Houston J. Math., (2003), 483. Google Scholar

[31]

Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species,, J. Diff. Eqs., 223 (2006), 400. Google Scholar

[32]

Y. Lou, personal, communication., (). Google Scholar

[33]

Y. Lou, S. Martinez and W. M. Ni, On $3\times 3$ Lotka-Volterra competition systems with cross-diffusion,, Dis. Cont. Dyn. Sys., 6 (2000), 175. Google Scholar

[34]

Y. Lou and W. M. Ni, Diffusion, self-diffusion and cross-diffusion,, J. Diff. Eqs., 131 (1996), 79. Google Scholar

[35]

Y. Lou and W. M. Ni, Diffusion vs. cross-diffusion: An elliptic approach,, J. Diff. Eqs., 154 (1999), 157. Google Scholar

[36]

Y. Lou, W. M. Ni and S. Yotsutani, On a limiting system in the Lotka-Volterra competition with cross-diffusion,, Dis. Cont. Dyn. Sys., 10 (2004), 435. doi: 10.3934/dcds.2004.10.435. Google Scholar

[37]

Y. Lou, S. Martinez and P. Poláčik, Loops and branches of coexistence states in a Lotka-Volterra competition model,, J. Diff. Eqs., 230 (2006), 720. Google Scholar

[38]

H. Matano and M. Mimura, Pattern formation in competition-diffusion systems in non-convex domains,, Publ. RIMS. Kyoto Univ., 19 (1983), 1049. doi: 10.2977/prims/1195182020. Google Scholar

[39]

M. Mimura, Stationary pattern of some density-dependent diffusion system with competitive dynamics,, Hiroshima Math. J., 11 (1981), 621. Google Scholar

[40]

M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations,, J. Math. Biol., 9 (1980), 49. doi: 10.1007/BF00276035. Google Scholar

[41]

M. Mimura, Y. Nishiura, A. Tesei and T. Tsujikawa, Coexistence problem for two competing species models with density-dependent diffusion,, Hiroshima Math. J., 14 (1984), 425. Google Scholar

[42]

J. D. Murray, "Mathematical Biology. II. Spatial Models and Biomedical Applications, $3^{nd}$,", Interdisciplinary Applied Mathematics, (2003). Google Scholar

[43]

H. Ninomiya, Separatrices of competition-diffusion equations,, J. Math. Kyoto Univ., 35 (1995), 539. Google Scholar

[44]

A. Okubo and S. Levin, "Diffusion and Ecological Problems: Modern Perspectives, $2^{nd}$,", Interdisciplinary Applied Mathematics, 14 (2001). Google Scholar

[45]

S. Pacala and J. Roughgarden, Spatial heterogeneity and interspecific competition,, Theor. Popul. Biol., 21 (1982), 92. doi: 10.1016/0040-5809(82)90008-9. Google Scholar

[46]

A. B. Potapov and M. A. Lewis, Climate and competition: The effect of moving range boundaries on habitat invisibility,, Bull. Math. Biol., 66 (2004), 975. doi: 10.1016/j.bulm.2003.10.010. Google Scholar

[47]

N. Shigesada and K. Kawasaki, "Biological Invasions: Theory and Practice,", Oxford Series in Ecology and Evolution, (1997). Google Scholar

[48]

N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species,, J. Theo. Biol., 79 (1979), 83. doi: 10.1016/0022-5193(79)90258-3. Google Scholar

[49]

I. Takagi, Point-condensation for a reaction-diffusion system,, J. Diff. Eqs., 61 (1986), 208. Google Scholar

show all references

References:
[1]

J. M. Arrieta, A. N. Carvalho and A. Rodriguez-Bernal, Upper semicontinuity for attractors of parabolic problems with localized large diffusion and nonlinear boundary conditions,, J. Diff. Eqs., 168 (2000), 33. Google Scholar

[2]

R. S. Cantrell and C. Cosner, The effect of spatial heterogeneity in population dynamics,, J. Math. Biol., 29 (1991), 315. doi: 10.1007/BF00167155. Google Scholar

[3]

R. S. Cantrell and C. Cosner, Should a park be an island?,, SIAM J. Appl. Math., 53 (1993), 219. doi: 10.1137/0153014. Google Scholar

[4]

R. S. Cantrell and C. Cosner, On the effects of spatial heterogeneity on the persistence of interacting species,, J. Math. Biol., 37 (1998), 103. doi: 10.1007/s002850050122. Google Scholar

[5]

R. S. Cantrell and C. Cosner, "Spatial Ecology Via Reaction-Diffusion Equations,", Series in Mathematical and Computational Biology, (2003). Google Scholar

[6]

R. S. Cantrell, C. Cosner and V. Huston, Permanence in ecological systems with diffusion,, Proc. Roy. Soc. Edinburgh A, 123 (1993), 553. Google Scholar

[7]

R. S. Cantrell, C. Cosner and V. Huston, Ecological models, permanence and spatial heterogeneity,, Rocky Mount. J. Math., 26 (1996), 1. doi: 10.1216/rmjm/1181072101. Google Scholar

[8]

R. S. Cantrell, C. Cosner and Y. Lou, Multiple reversals of competitive dominance in ecological reserves via external habitat degradation,, J. Dynam. Differential Equations, 16 (2004), 973. doi: 10.1007/s10884-004-7831-y. Google Scholar

[9]

A. N. Carvalho and J. K. Hale, Large diffusion with dispersion,, Nonlinear Anal., 17 (1991), 1139. doi: 10.1016/0362-546X(91)90233-Q. Google Scholar

[10]

Y. S. Choi, R. Lui and Y. Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with weak cross-diffusion,, Disc. Cont. Dyn. Syst. A, 9 (2003), 1193. doi: 10.3934/dcds.2003.9.1193. Google Scholar

[11]

E. Conway, D. Hoff and J. Smoller, Large time behavior of solutions of systems of nonlinear reaction-diffusion equations,, SIAM J. Appl. Math., 35 (1978), 1. doi: 10.1137/0135001. Google Scholar

[12]

J. Dockery, V. Hutson, K. Mischaikow and M. Pernarowski, The evolution of slow dispersal rates: A reaction-diffusion equations,, J. Math. Biol., 37 (1998), 61. doi: 10.1007/s002850050120. Google Scholar

[13]

Y. Du, Effects of a degeneracy in the competition model, Part I. Classical and generalized steady-state solutions,, J. Differential Equations, 181 (2002), 92. doi: 10.1006/jdeq.2001.4074. Google Scholar

[14]

Y. Du, Effects of a degeneracy in the competition model, Part II. Perturbation and dynamical behavior,, J. Differential Equations, 181 (2002), 133. doi: 10.1006/jdeq.2001.4075. Google Scholar

[15]

Y. Du, Realization of prescribed patterns in the competition model,, J. Differential Equations, 193 (2003), 147. doi: 10.1016/S0022-0396(03)00056-1. Google Scholar

[16]

J. E. Furter and J. López-Gómez, Diffusion-mediated permanence problem for a heterogeneous Lotka-Volterra competition model,, Proc. Roy. Soc. Edinburgh A, 127 (1997), 281. Google Scholar

[17]

J. K. Hale, Large diffusivity and asymptotic behavior in parabolic system,, J. Math. Anal. Appl., 118 (1986), 455. doi: 10.1016/0022-247X(86)90273-8. Google Scholar

[18]

A. Hastings, Spatial heterogeneity and ecological models,, Ecology, 71 (1990), 426. doi: 10.2307/1940296. Google Scholar

[19]

E. E. Holmes, M. A. Lewis, J. E. Banks and R. R. Veit, Partial differential equations in ecology: Spatial interactions and population dynamics,, Ecology, 75 (1994), 17. doi: 10.2307/1939378. Google Scholar

[20]

V. Hutson, J. López-Gómez, K. Mischaikow and G. Vickers, Limit behavior for a competing species problem with diffusion, in Dynamical Systems and applications,, World Scientific Series Applicable Analysis, 4 (1995), 343. Google Scholar

[21]

V. Hutson, Y. Lou and K. Mischaikow, Spatial heterogeneity of resources versus Lotka-Volterra dynamics,, J. Differential Equations, 185 (2002), 97. doi: 10.1006/jdeq.2001.4157. Google Scholar

[22]

V. Hutson, Y. Lou and K. Mischaikow, Convergence in competition models with small diffusion coefficients,, J. Differential Equations, 211 (2005), 135. doi: 10.1016/j.jde.2004.06.003. Google Scholar

[23]

V. Hutson, Y. Lou, K. Mischaikow and P. Poláčik, Competing species near the degenerate limit,, SIAM J. Math. Anal., 35 (2003), 453. doi: 10.1137/S0036141002402189. Google Scholar

[24]

V. Hutson, S. Martinez, K. Mischaikow and G. T. Vicker, The evolution of dispersal,, J. Math. Biol., 47 (2003), 483. doi: 10.1007/s00285-003-0210-1. Google Scholar

[25]

V. Hutson, K. Mischaikow and P. Poláčik, The evolution of dispersal rates in a heterogeneous time-periodic environment,, J. Math. Biol., 43 (2001), 501. doi: 10.1007/s002850100106. Google Scholar

[26]

M. Iida, M. Mimura and H. Ninomiya, Diffusion, cross-diffusion and competitive interaction,, J. Math. Biol., 53 (2006), 617. doi: 10.1007/s00285-006-0013-2. Google Scholar

[27]

M. Iida, M. Tatsuya, H, Ninomiya and E. Yanagida, Diffusion-induced extinction of a superior species in a competition system,, Japan J. Indust. Appl. Math., 15 (1998), 223. doi: 10.1007/BF03167402. Google Scholar

[28]

J. Jiang, X. Liang and X. Zhao, Saddle point behavior for monotone semiflows and reaction-diffusion models,, J. Differential Equations, 203 (2004), 313. doi: 10.1016/j.jde.2004.05.002. Google Scholar

[29]

S. Kirkland, C. K. Li and S. J. Schreiber, On the evolution of dispersal in patchy environments,, SIAM J. Appl. Math., 66 (2006), 1366. doi: 10.1137/050628933. Google Scholar

[30]

J. López-Gómez, Coexistence and meta-coexistence for competing species,, Houston J. Math., (2003), 483. Google Scholar

[31]

Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species,, J. Diff. Eqs., 223 (2006), 400. Google Scholar

[32]

Y. Lou, personal, communication., (). Google Scholar

[33]

Y. Lou, S. Martinez and W. M. Ni, On $3\times 3$ Lotka-Volterra competition systems with cross-diffusion,, Dis. Cont. Dyn. Sys., 6 (2000), 175. Google Scholar

[34]

Y. Lou and W. M. Ni, Diffusion, self-diffusion and cross-diffusion,, J. Diff. Eqs., 131 (1996), 79. Google Scholar

[35]

Y. Lou and W. M. Ni, Diffusion vs. cross-diffusion: An elliptic approach,, J. Diff. Eqs., 154 (1999), 157. Google Scholar

[36]

Y. Lou, W. M. Ni and S. Yotsutani, On a limiting system in the Lotka-Volterra competition with cross-diffusion,, Dis. Cont. Dyn. Sys., 10 (2004), 435. doi: 10.3934/dcds.2004.10.435. Google Scholar

[37]

Y. Lou, S. Martinez and P. Poláčik, Loops and branches of coexistence states in a Lotka-Volterra competition model,, J. Diff. Eqs., 230 (2006), 720. Google Scholar

[38]

H. Matano and M. Mimura, Pattern formation in competition-diffusion systems in non-convex domains,, Publ. RIMS. Kyoto Univ., 19 (1983), 1049. doi: 10.2977/prims/1195182020. Google Scholar

[39]

M. Mimura, Stationary pattern of some density-dependent diffusion system with competitive dynamics,, Hiroshima Math. J., 11 (1981), 621. Google Scholar

[40]

M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations,, J. Math. Biol., 9 (1980), 49. doi: 10.1007/BF00276035. Google Scholar

[41]

M. Mimura, Y. Nishiura, A. Tesei and T. Tsujikawa, Coexistence problem for two competing species models with density-dependent diffusion,, Hiroshima Math. J., 14 (1984), 425. Google Scholar

[42]

J. D. Murray, "Mathematical Biology. II. Spatial Models and Biomedical Applications, $3^{nd}$,", Interdisciplinary Applied Mathematics, (2003). Google Scholar

[43]

H. Ninomiya, Separatrices of competition-diffusion equations,, J. Math. Kyoto Univ., 35 (1995), 539. Google Scholar

[44]

A. Okubo and S. Levin, "Diffusion and Ecological Problems: Modern Perspectives, $2^{nd}$,", Interdisciplinary Applied Mathematics, 14 (2001). Google Scholar

[45]

S. Pacala and J. Roughgarden, Spatial heterogeneity and interspecific competition,, Theor. Popul. Biol., 21 (1982), 92. doi: 10.1016/0040-5809(82)90008-9. Google Scholar

[46]

A. B. Potapov and M. A. Lewis, Climate and competition: The effect of moving range boundaries on habitat invisibility,, Bull. Math. Biol., 66 (2004), 975. doi: 10.1016/j.bulm.2003.10.010. Google Scholar

[47]

N. Shigesada and K. Kawasaki, "Biological Invasions: Theory and Practice,", Oxford Series in Ecology and Evolution, (1997). Google Scholar

[48]

N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species,, J. Theo. Biol., 79 (1979), 83. doi: 10.1016/0022-5193(79)90258-3. Google Scholar

[49]

I. Takagi, Point-condensation for a reaction-diffusion system,, J. Diff. Eqs., 61 (1986), 208. Google Scholar

[1]

Qi Wang. On steady state of some Lotka-Volterra competition-diffusion-advection model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019193

[2]

Xiao He, Sining Zheng. Protection zone in a modified Lotka-Volterra model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2027-2038. doi: 10.3934/dcdsb.2015.20.2027

[3]

Yoshiaki Muroya. A Lotka-Volterra system with patch structure (related to a multi-group SI epidemic model). Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 999-1008. doi: 10.3934/dcdss.2015.8.999

[4]

Qi Wang. On the steady state of a shadow system to the SKT competition model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2941-2961. doi: 10.3934/dcdsb.2014.19.2941

[5]

Georg Hetzer, Tung Nguyen, Wenxian Shen. Coexistence and extinction in the Volterra-Lotka competition model with nonlocal dispersal. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1699-1722. doi: 10.3934/cpaa.2012.11.1699

[6]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[7]

Yuan Lou, Dongmei Xiao, Peng Zhou. Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 953-969. doi: 10.3934/dcds.2016.36.953

[8]

Linping Peng, Zhaosheng Feng, Changjian Liu. Quadratic perturbations of a quadratic reversible Lotka-Volterra system with two centers. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4807-4826. doi: 10.3934/dcds.2014.34.4807

[9]

Xiaoli Liu, Dongmei Xiao. Bifurcations in a discrete time Lotka-Volterra predator-prey system. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 559-572. doi: 10.3934/dcdsb.2006.6.559

[10]

Fuke Wu, Yangzi Hu. Stochastic Lotka-Volterra system with unbounded distributed delay. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 275-288. doi: 10.3934/dcdsb.2010.14.275

[11]

Jong-Shenq Guo, Ying-Chih Lin. The sign of the wave speed for the Lotka-Volterra competition-diffusion system. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2083-2090. doi: 10.3934/cpaa.2013.12.2083

[12]

Qi Wang, Chunyi Gai, Jingda Yan. Qualitative analysis of a Lotka-Volterra competition system with advection. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1239-1284. doi: 10.3934/dcds.2015.35.1239

[13]

Anthony W. Leung, Xiaojie Hou, Wei Feng. Traveling wave solutions for Lotka-Volterra system re-visited. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 171-196. doi: 10.3934/dcdsb.2011.15.171

[14]

Qi Wang, Yang Song, Lingjie Shao. Boundedness and persistence of populations in advective Lotka-Volterra competition system. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2245-2263. doi: 10.3934/dcdsb.2018195

[15]

Yukio Kan-On. Global bifurcation structure of stationary solutions for a Lotka-Volterra competition model. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 147-162. doi: 10.3934/dcds.2002.8.147

[16]

Yueding Yuan, Yang Wang, Xingfu Zou. Spatial dynamics of a Lotka-Volterra model with a shifting habitat. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5633-5671. doi: 10.3934/dcdsb.2019076

[17]

Juan Luis García Guirao, Marek Lampart. Transitivity of a Lotka-Volterra map. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 75-82. doi: 10.3934/dcdsb.2008.9.75

[18]

Yuzo Hosono. Traveling waves for the Lotka-Volterra predator-prey system without diffusion of the predator. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 161-171. doi: 10.3934/dcdsb.2015.20.161

[19]

Hélène Leman, Sylvie Méléard, Sepideh Mirrahimi. Influence of a spatial structure on the long time behavior of a competitive Lotka-Volterra type system. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 469-493. doi: 10.3934/dcdsb.2015.20.469

[20]

Yubin Liu, Peixuan Weng. Asymptotic spreading of a three dimensional Lotka-Volterra cooperative-competitive system. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 505-518. doi: 10.3934/dcdsb.2015.20.505

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]