Citation: |
[1] |
J. M. Arrieta, A. N. Carvalho and A. Rodriguez-Bernal, Upper semicontinuity for attractors of parabolic problems with localized large diffusion and nonlinear boundary conditions, J. Diff. Eqs., 168 (2000), 33-59. |
[2] |
R. S. Cantrell and C. Cosner, The effect of spatial heterogeneity in population dynamics, J. Math. Biol., 29 (1991), 315-338.doi: 10.1007/BF00167155. |
[3] |
R. S. Cantrell and C. Cosner, Should a park be an island?, SIAM J. Appl. Math., 53 (1993), 219-252.doi: 10.1137/0153014. |
[4] |
R. S. Cantrell and C. Cosner, On the effects of spatial heterogeneity on the persistence of interacting species, J. Math. Biol., 37 (1998), 103-145.doi: 10.1007/s002850050122. |
[5] |
R. S. Cantrell and C. Cosner, "Spatial Ecology Via Reaction-Diffusion Equations," Series in Mathematical and Computational Biology, Wiley, Chichester, UK, 2003. |
[6] |
R. S. Cantrell, C. Cosner and V. Huston, Permanence in ecological systems with diffusion, Proc. Roy. Soc. Edinburgh A, 123 (1993), 553-559. |
[7] |
R. S. Cantrell, C. Cosner and V. Huston, Ecological models, permanence and spatial heterogeneity, Rocky Mount. J. Math., 26 (1996), 1-35.doi: 10.1216/rmjm/1181072101. |
[8] |
R. S. Cantrell, C. Cosner and Y. Lou, Multiple reversals of competitive dominance in ecological reserves via external habitat degradation, J. Dynam. Differential Equations, 16 (2004), 973-1010.doi: 10.1007/s10884-004-7831-y. |
[9] |
A. N. Carvalho and J. K. Hale, Large diffusion with dispersion, Nonlinear Anal., 17 (1991), 1139-1151.doi: 10.1016/0362-546X(91)90233-Q. |
[10] |
Y. S. Choi, R. Lui and Y. Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with weak cross-diffusion, Disc. Cont. Dyn. Syst. A, 9 (2003), 1193-1200.doi: 10.3934/dcds.2003.9.1193. |
[11] |
E. Conway, D. Hoff and J. Smoller, Large time behavior of solutions of systems of nonlinear reaction-diffusion equations, SIAM J. Appl. Math., 35 (1978), 1-16.doi: 10.1137/0135001. |
[12] |
J. Dockery, V. Hutson, K. Mischaikow and M. Pernarowski, The evolution of slow dispersal rates: A reaction-diffusion equations, J. Math. Biol., 37 (1998), 61-83.doi: 10.1007/s002850050120. |
[13] |
Y. Du, Effects of a degeneracy in the competition model, Part I. Classical and generalized steady-state solutions, J. Differential Equations, 181 (2002), 92-132.doi: 10.1006/jdeq.2001.4074. |
[14] |
Y. Du, Effects of a degeneracy in the competition model, Part II. Perturbation and dynamical behavior, J. Differential Equations, 181 (2002), 133-164.doi: 10.1006/jdeq.2001.4075. |
[15] |
Y. Du, Realization of prescribed patterns in the competition model, J. Differential Equations, 193 (2003), 147-179.doi: 10.1016/S0022-0396(03)00056-1. |
[16] |
J. E. Furter and J. López-Gómez, Diffusion-mediated permanence problem for a heterogeneous Lotka-Volterra competition model, Proc. Roy. Soc. Edinburgh A, 127 (1997), 281-336. |
[17] |
J. K. Hale, Large diffusivity and asymptotic behavior in parabolic system, J. Math. Anal. Appl., 118 (1986), 455-466.doi: 10.1016/0022-247X(86)90273-8. |
[18] |
A. Hastings, Spatial heterogeneity and ecological models, Ecology, 71 (1990), 426-428.doi: 10.2307/1940296. |
[19] |
E. E. Holmes, M. A. Lewis, J. E. Banks and R. R. Veit, Partial differential equations in ecology: Spatial interactions and population dynamics, Ecology, 75 (1994), 17-29.doi: 10.2307/1939378. |
[20] |
V. Hutson, J. López-Gómez, K. Mischaikow and G. Vickers, Limit behavior for a competing species problem with diffusion, in Dynamical Systems and applications, World Scientific Series Applicable Analysis, 4, World Scientific, River Edge, NJ, (1995), 343-358. |
[21] |
V. Hutson, Y. Lou and K. Mischaikow, Spatial heterogeneity of resources versus Lotka-Volterra dynamics, J. Differential Equations, 185 (2002), 97-136.doi: 10.1006/jdeq.2001.4157. |
[22] |
V. Hutson, Y. Lou and K. Mischaikow, Convergence in competition models with small diffusion coefficients, J. Differential Equations, 211 (2005), 135-161.doi: 10.1016/j.jde.2004.06.003. |
[23] |
V. Hutson, Y. Lou, K. Mischaikow and P. Poláčik, Competing species near the degenerate limit, SIAM J. Math. Anal., 35 (2003), 453-491.doi: 10.1137/S0036141002402189. |
[24] |
V. Hutson, S. Martinez, K. Mischaikow and G. T. Vicker, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.doi: 10.1007/s00285-003-0210-1. |
[25] |
V. Hutson, K. Mischaikow and P. Poláčik, The evolution of dispersal rates in a heterogeneous time-periodic environment, J. Math. Biol., 43 (2001), 501-533.doi: 10.1007/s002850100106. |
[26] |
M. Iida, M. Mimura and H. Ninomiya, Diffusion, cross-diffusion and competitive interaction, J. Math. Biol., 53 (2006), 617-641.doi: 10.1007/s00285-006-0013-2. |
[27] |
M. Iida, M. Tatsuya, H, Ninomiya and E. Yanagida, Diffusion-induced extinction of a superior species in a competition system, Japan J. Indust. Appl. Math., 15 (1998), 223-252.doi: 10.1007/BF03167402. |
[28] |
J. Jiang, X. Liang and X. Zhao, Saddle point behavior for monotone semiflows and reaction-diffusion models, J. Differential Equations, 203 (2004), 313-330.doi: 10.1016/j.jde.2004.05.002. |
[29] |
S. Kirkland, C. K. Li and S. J. Schreiber, On the evolution of dispersal in patchy environments, SIAM J. Appl. Math., 66 (2006), 1366-1382.doi: 10.1137/050628933. |
[30] |
J. López-Gómez, Coexistence and meta-coexistence for competing species, Houston J. Math., (2003), 483-536. |
[31] |
Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Diff. Eqs., 223 (2006), 400-426. |
[32] |
Y. Lou, personal communication. |
[33] |
Y. Lou, S. Martinez and W. M. Ni, On $3\times 3$ Lotka-Volterra competition systems with cross-diffusion, Dis. Cont. Dyn. Sys., 6 (2000), 175-190. |
[34] |
Y. Lou and W. M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Diff. Eqs., 131 (1996), 79-131. |
[35] |
Y. Lou and W. M. Ni, Diffusion vs. cross-diffusion: An elliptic approach, J. Diff. Eqs., 154 (1999), 157-190. |
[36] |
Y. Lou, W. M. Ni and S. Yotsutani, On a limiting system in the Lotka-Volterra competition with cross-diffusion, Dis. Cont. Dyn. Sys., 10 (2004), 435-458.doi: 10.3934/dcds.2004.10.435. |
[37] |
Y. Lou, S. Martinez and P. Poláčik, Loops and branches of coexistence states in a Lotka-Volterra competition model, J. Diff. Eqs., 230 (2006), 720-742. |
[38] |
H. Matano and M. Mimura, Pattern formation in competition-diffusion systems in non-convex domains, Publ. RIMS. Kyoto Univ., 19 (1983), 1049-1079.doi: 10.2977/prims/1195182020. |
[39] |
M. Mimura, Stationary pattern of some density-dependent diffusion system with competitive dynamics, Hiroshima Math. J., 11 (1981), 621-635. |
[40] |
M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations, J. Math. Biol., 9 (1980), 49-64.doi: 10.1007/BF00276035. |
[41] |
M. Mimura, Y. Nishiura, A. Tesei and T. Tsujikawa, Coexistence problem for two competing species models with density-dependent diffusion, Hiroshima Math. J., 14 (1984), 425-449. |
[42] |
J. D. Murray, "Mathematical Biology. II. Spatial Models and Biomedical Applications, $3^{nd}$," Interdisciplinary Applied Mathematics, Springer, New York, 2003. |
[43] |
H. Ninomiya, Separatrices of competition-diffusion equations, J. Math. Kyoto Univ., 35 (1995), 539-567. |
[44] |
A. Okubo and S. Levin, "Diffusion and Ecological Problems: Modern Perspectives, $2^{nd}$," Interdisciplinary Applied Mathematics, 14, Springer, New York, 2001. |
[45] |
S. Pacala and J. Roughgarden, Spatial heterogeneity and interspecific competition, Theor. Popul. Biol., 21 (1982), 92-113.doi: 10.1016/0040-5809(82)90008-9. |
[46] |
A. B. Potapov and M. A. Lewis, Climate and competition: The effect of moving range boundaries on habitat invisibility, Bull. Math. Biol., 66 (2004), 975-1008.doi: 10.1016/j.bulm.2003.10.010. |
[47] |
N. Shigesada and K. Kawasaki, "Biological Invasions: Theory and Practice," Oxford Series in Ecology and Evolution, Oxford University Press, Oxford, New York, Tokyo, 1997. |
[48] |
N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theo. Biol., 79 (1979), 83-99.doi: 10.1016/0022-5193(79)90258-3. |
[49] |
I. Takagi, Point-condensation for a reaction-diffusion system, J. Diff. Eqs., 61 (1986), 208-249. |