\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the effects of migration and inter-specific competitions in steady state of some Lotka-Volterra model

Abstract Related Papers Cited by
  • Shadow systems are often used to approximate reaction-diffusion systems when one of the diffusion rates is large. In this paper, we investigate in a shadow system the effects of migration and interspecific competition coefficients on the existence of positive solutions. Our study shows that for any given migration, if the interspecific competition coefficient of the invader is small, then the shadow system has coexistence state; otherwise we can always find some migration such that it has no coexistence state. Moreover, these findings can be applied to steady state of a two-species Lotka-Volterra competition-diffusion model. Particularly, we show that if the interspecific competition coefficient of the invader is sufficiently small, then rapid diffusion of the invader can drive to coexistence state.
    Mathematics Subject Classification: Primary: 35B40, 35B45; Secondary: 35J55, 92D10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. M. Arrieta, A. N. Carvalho and A. Rodriguez-Bernal, Upper semicontinuity for attractors of parabolic problems with localized large diffusion and nonlinear boundary conditions, J. Diff. Eqs., 168 (2000), 33-59.

    [2]

    R. S. Cantrell and C. Cosner, The effect of spatial heterogeneity in population dynamics, J. Math. Biol., 29 (1991), 315-338.doi: 10.1007/BF00167155.

    [3]

    R. S. Cantrell and C. Cosner, Should a park be an island?, SIAM J. Appl. Math., 53 (1993), 219-252.doi: 10.1137/0153014.

    [4]

    R. S. Cantrell and C. Cosner, On the effects of spatial heterogeneity on the persistence of interacting species, J. Math. Biol., 37 (1998), 103-145.doi: 10.1007/s002850050122.

    [5]

    R. S. Cantrell and C. Cosner, "Spatial Ecology Via Reaction-Diffusion Equations," Series in Mathematical and Computational Biology, Wiley, Chichester, UK, 2003.

    [6]

    R. S. Cantrell, C. Cosner and V. Huston, Permanence in ecological systems with diffusion, Proc. Roy. Soc. Edinburgh A, 123 (1993), 553-559.

    [7]

    R. S. Cantrell, C. Cosner and V. Huston, Ecological models, permanence and spatial heterogeneity, Rocky Mount. J. Math., 26 (1996), 1-35.doi: 10.1216/rmjm/1181072101.

    [8]

    R. S. Cantrell, C. Cosner and Y. Lou, Multiple reversals of competitive dominance in ecological reserves via external habitat degradation, J. Dynam. Differential Equations, 16 (2004), 973-1010.doi: 10.1007/s10884-004-7831-y.

    [9]

    A. N. Carvalho and J. K. Hale, Large diffusion with dispersion, Nonlinear Anal., 17 (1991), 1139-1151.doi: 10.1016/0362-546X(91)90233-Q.

    [10]

    Y. S. Choi, R. Lui and Y. Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with weak cross-diffusion, Disc. Cont. Dyn. Syst. A, 9 (2003), 1193-1200.doi: 10.3934/dcds.2003.9.1193.

    [11]

    E. Conway, D. Hoff and J. Smoller, Large time behavior of solutions of systems of nonlinear reaction-diffusion equations, SIAM J. Appl. Math., 35 (1978), 1-16.doi: 10.1137/0135001.

    [12]

    J. Dockery, V. Hutson, K. Mischaikow and M. Pernarowski, The evolution of slow dispersal rates: A reaction-diffusion equations, J. Math. Biol., 37 (1998), 61-83.doi: 10.1007/s002850050120.

    [13]

    Y. Du, Effects of a degeneracy in the competition model, Part I. Classical and generalized steady-state solutions, J. Differential Equations, 181 (2002), 92-132.doi: 10.1006/jdeq.2001.4074.

    [14]

    Y. Du, Effects of a degeneracy in the competition model, Part II. Perturbation and dynamical behavior, J. Differential Equations, 181 (2002), 133-164.doi: 10.1006/jdeq.2001.4075.

    [15]

    Y. Du, Realization of prescribed patterns in the competition model, J. Differential Equations, 193 (2003), 147-179.doi: 10.1016/S0022-0396(03)00056-1.

    [16]

    J. E. Furter and J. López-Gómez, Diffusion-mediated permanence problem for a heterogeneous Lotka-Volterra competition model, Proc. Roy. Soc. Edinburgh A, 127 (1997), 281-336.

    [17]

    J. K. Hale, Large diffusivity and asymptotic behavior in parabolic system, J. Math. Anal. Appl., 118 (1986), 455-466.doi: 10.1016/0022-247X(86)90273-8.

    [18]

    A. Hastings, Spatial heterogeneity and ecological models, Ecology, 71 (1990), 426-428.doi: 10.2307/1940296.

    [19]

    E. E. Holmes, M. A. Lewis, J. E. Banks and R. R. Veit, Partial differential equations in ecology: Spatial interactions and population dynamics, Ecology, 75 (1994), 17-29.doi: 10.2307/1939378.

    [20]

    V. Hutson, J. López-Gómez, K. Mischaikow and G. Vickers, Limit behavior for a competing species problem with diffusion, in Dynamical Systems and applications, World Scientific Series Applicable Analysis, 4, World Scientific, River Edge, NJ, (1995), 343-358.

    [21]

    V. Hutson, Y. Lou and K. Mischaikow, Spatial heterogeneity of resources versus Lotka-Volterra dynamics, J. Differential Equations, 185 (2002), 97-136.doi: 10.1006/jdeq.2001.4157.

    [22]

    V. Hutson, Y. Lou and K. Mischaikow, Convergence in competition models with small diffusion coefficients, J. Differential Equations, 211 (2005), 135-161.doi: 10.1016/j.jde.2004.06.003.

    [23]

    V. Hutson, Y. Lou, K. Mischaikow and P. Poláčik, Competing species near the degenerate limit, SIAM J. Math. Anal., 35 (2003), 453-491.doi: 10.1137/S0036141002402189.

    [24]

    V. Hutson, S. Martinez, K. Mischaikow and G. T. Vicker, The evolution of dispersal, J. Math. Biol., 47 (2003), 483-517.doi: 10.1007/s00285-003-0210-1.

    [25]

    V. Hutson, K. Mischaikow and P. Poláčik, The evolution of dispersal rates in a heterogeneous time-periodic environment, J. Math. Biol., 43 (2001), 501-533.doi: 10.1007/s002850100106.

    [26]

    M. Iida, M. Mimura and H. Ninomiya, Diffusion, cross-diffusion and competitive interaction, J. Math. Biol., 53 (2006), 617-641.doi: 10.1007/s00285-006-0013-2.

    [27]

    M. Iida, M. Tatsuya, H, Ninomiya and E. Yanagida, Diffusion-induced extinction of a superior species in a competition system, Japan J. Indust. Appl. Math., 15 (1998), 223-252.doi: 10.1007/BF03167402.

    [28]

    J. Jiang, X. Liang and X. Zhao, Saddle point behavior for monotone semiflows and reaction-diffusion models, J. Differential Equations, 203 (2004), 313-330.doi: 10.1016/j.jde.2004.05.002.

    [29]

    S. Kirkland, C. K. Li and S. J. Schreiber, On the evolution of dispersal in patchy environments, SIAM J. Appl. Math., 66 (2006), 1366-1382.doi: 10.1137/050628933.

    [30]

    J. López-Gómez, Coexistence and meta-coexistence for competing species, Houston J. Math., (2003), 483-536.

    [31]

    Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species, J. Diff. Eqs., 223 (2006), 400-426.

    [32]

    Y. Lou, personal communication.

    [33]

    Y. Lou, S. Martinez and W. M. Ni, On $3\times 3$ Lotka-Volterra competition systems with cross-diffusion, Dis. Cont. Dyn. Sys., 6 (2000), 175-190.

    [34]

    Y. Lou and W. M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Diff. Eqs., 131 (1996), 79-131.

    [35]

    Y. Lou and W. M. Ni, Diffusion vs. cross-diffusion: An elliptic approach, J. Diff. Eqs., 154 (1999), 157-190.

    [36]

    Y. Lou, W. M. Ni and S. Yotsutani, On a limiting system in the Lotka-Volterra competition with cross-diffusion, Dis. Cont. Dyn. Sys., 10 (2004), 435-458.doi: 10.3934/dcds.2004.10.435.

    [37]

    Y. Lou, S. Martinez and P. Poláčik, Loops and branches of coexistence states in a Lotka-Volterra competition model, J. Diff. Eqs., 230 (2006), 720-742.

    [38]

    H. Matano and M. Mimura, Pattern formation in competition-diffusion systems in non-convex domains, Publ. RIMS. Kyoto Univ., 19 (1983), 1049-1079.doi: 10.2977/prims/1195182020.

    [39]

    M. Mimura, Stationary pattern of some density-dependent diffusion system with competitive dynamics, Hiroshima Math. J., 11 (1981), 621-635.

    [40]

    M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations, J. Math. Biol., 9 (1980), 49-64.doi: 10.1007/BF00276035.

    [41]

    M. Mimura, Y. Nishiura, A. Tesei and T. Tsujikawa, Coexistence problem for two competing species models with density-dependent diffusion, Hiroshima Math. J., 14 (1984), 425-449.

    [42]

    J. D. Murray, "Mathematical Biology. II. Spatial Models and Biomedical Applications, $3^{nd}$," Interdisciplinary Applied Mathematics, Springer, New York, 2003.

    [43]

    H. Ninomiya, Separatrices of competition-diffusion equations, J. Math. Kyoto Univ., 35 (1995), 539-567.

    [44]

    A. Okubo and S. Levin, "Diffusion and Ecological Problems: Modern Perspectives, $2^{nd}$," Interdisciplinary Applied Mathematics, 14, Springer, New York, 2001.

    [45]

    S. Pacala and J. Roughgarden, Spatial heterogeneity and interspecific competition, Theor. Popul. Biol., 21 (1982), 92-113.doi: 10.1016/0040-5809(82)90008-9.

    [46]

    A. B. Potapov and M. A. Lewis, Climate and competition: The effect of moving range boundaries on habitat invisibility, Bull. Math. Biol., 66 (2004), 975-1008.doi: 10.1016/j.bulm.2003.10.010.

    [47]

    N. Shigesada and K. Kawasaki, "Biological Invasions: Theory and Practice," Oxford Series in Ecology and Evolution, Oxford University Press, Oxford, New York, Tokyo, 1997.

    [48]

    N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theo. Biol., 79 (1979), 83-99.doi: 10.1016/0022-5193(79)90258-3.

    [49]

    I. Takagi, Point-condensation for a reaction-diffusion system, J. Diff. Eqs., 61 (1986), 208-249.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(146) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return