December  2011, 15(3): 669-686. doi: 10.3934/dcdsb.2011.15.669

On the effects of migration and inter-specific competitions in steady state of some Lotka-Volterra model

1. 

Department of Mathematics, Purdue University, 150 N. University St., West Lafayette, IN 47907, United States

2. 

Department of mathematics, East China Normal University, 500 Dong Chuan Road, Shanghai 200241

3. 

Institute of Mathematics, Hangzhou Dianzi Universitye, Xiasha Hangzhou Zhejiang 310018

Received  January 2010 Revised  March 2010 Published  February 2011

Shadow systems are often used to approximate reaction-diffusion systems when one of the diffusion rates is large. In this paper, we investigate in a shadow system the effects of migration and interspecific competition coefficients on the existence of positive solutions. Our study shows that for any given migration, if the interspecific competition coefficient of the invader is small, then the shadow system has coexistence state; otherwise we can always find some migration such that it has no coexistence state. Moreover, these findings can be applied to steady state of a two-species Lotka-Volterra competition-diffusion model. Particularly, we show that if the interspecific competition coefficient of the invader is sufficiently small, then rapid diffusion of the invader can drive to coexistence state.
Citation: Fang Li, Liping Wang, Yang Wang. On the effects of migration and inter-specific competitions in steady state of some Lotka-Volterra model. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 669-686. doi: 10.3934/dcdsb.2011.15.669
References:
[1]

J. M. Arrieta, A. N. Carvalho and A. Rodriguez-Bernal, Upper semicontinuity for attractors of parabolic problems with localized large diffusion and nonlinear boundary conditions,, J. Diff. Eqs., 168 (2000), 33.   Google Scholar

[2]

R. S. Cantrell and C. Cosner, The effect of spatial heterogeneity in population dynamics,, J. Math. Biol., 29 (1991), 315.  doi: 10.1007/BF00167155.  Google Scholar

[3]

R. S. Cantrell and C. Cosner, Should a park be an island?,, SIAM J. Appl. Math., 53 (1993), 219.  doi: 10.1137/0153014.  Google Scholar

[4]

R. S. Cantrell and C. Cosner, On the effects of spatial heterogeneity on the persistence of interacting species,, J. Math. Biol., 37 (1998), 103.  doi: 10.1007/s002850050122.  Google Scholar

[5]

R. S. Cantrell and C. Cosner, "Spatial Ecology Via Reaction-Diffusion Equations,", Series in Mathematical and Computational Biology, (2003).   Google Scholar

[6]

R. S. Cantrell, C. Cosner and V. Huston, Permanence in ecological systems with diffusion,, Proc. Roy. Soc. Edinburgh A, 123 (1993), 553.   Google Scholar

[7]

R. S. Cantrell, C. Cosner and V. Huston, Ecological models, permanence and spatial heterogeneity,, Rocky Mount. J. Math., 26 (1996), 1.  doi: 10.1216/rmjm/1181072101.  Google Scholar

[8]

R. S. Cantrell, C. Cosner and Y. Lou, Multiple reversals of competitive dominance in ecological reserves via external habitat degradation,, J. Dynam. Differential Equations, 16 (2004), 973.  doi: 10.1007/s10884-004-7831-y.  Google Scholar

[9]

A. N. Carvalho and J. K. Hale, Large diffusion with dispersion,, Nonlinear Anal., 17 (1991), 1139.  doi: 10.1016/0362-546X(91)90233-Q.  Google Scholar

[10]

Y. S. Choi, R. Lui and Y. Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with weak cross-diffusion,, Disc. Cont. Dyn. Syst. A, 9 (2003), 1193.  doi: 10.3934/dcds.2003.9.1193.  Google Scholar

[11]

E. Conway, D. Hoff and J. Smoller, Large time behavior of solutions of systems of nonlinear reaction-diffusion equations,, SIAM J. Appl. Math., 35 (1978), 1.  doi: 10.1137/0135001.  Google Scholar

[12]

J. Dockery, V. Hutson, K. Mischaikow and M. Pernarowski, The evolution of slow dispersal rates: A reaction-diffusion equations,, J. Math. Biol., 37 (1998), 61.  doi: 10.1007/s002850050120.  Google Scholar

[13]

Y. Du, Effects of a degeneracy in the competition model, Part I. Classical and generalized steady-state solutions,, J. Differential Equations, 181 (2002), 92.  doi: 10.1006/jdeq.2001.4074.  Google Scholar

[14]

Y. Du, Effects of a degeneracy in the competition model, Part II. Perturbation and dynamical behavior,, J. Differential Equations, 181 (2002), 133.  doi: 10.1006/jdeq.2001.4075.  Google Scholar

[15]

Y. Du, Realization of prescribed patterns in the competition model,, J. Differential Equations, 193 (2003), 147.  doi: 10.1016/S0022-0396(03)00056-1.  Google Scholar

[16]

J. E. Furter and J. López-Gómez, Diffusion-mediated permanence problem for a heterogeneous Lotka-Volterra competition model,, Proc. Roy. Soc. Edinburgh A, 127 (1997), 281.   Google Scholar

[17]

J. K. Hale, Large diffusivity and asymptotic behavior in parabolic system,, J. Math. Anal. Appl., 118 (1986), 455.  doi: 10.1016/0022-247X(86)90273-8.  Google Scholar

[18]

A. Hastings, Spatial heterogeneity and ecological models,, Ecology, 71 (1990), 426.  doi: 10.2307/1940296.  Google Scholar

[19]

E. E. Holmes, M. A. Lewis, J. E. Banks and R. R. Veit, Partial differential equations in ecology: Spatial interactions and population dynamics,, Ecology, 75 (1994), 17.  doi: 10.2307/1939378.  Google Scholar

[20]

V. Hutson, J. López-Gómez, K. Mischaikow and G. Vickers, Limit behavior for a competing species problem with diffusion, in Dynamical Systems and applications,, World Scientific Series Applicable Analysis, 4 (1995), 343.   Google Scholar

[21]

V. Hutson, Y. Lou and K. Mischaikow, Spatial heterogeneity of resources versus Lotka-Volterra dynamics,, J. Differential Equations, 185 (2002), 97.  doi: 10.1006/jdeq.2001.4157.  Google Scholar

[22]

V. Hutson, Y. Lou and K. Mischaikow, Convergence in competition models with small diffusion coefficients,, J. Differential Equations, 211 (2005), 135.  doi: 10.1016/j.jde.2004.06.003.  Google Scholar

[23]

V. Hutson, Y. Lou, K. Mischaikow and P. Poláčik, Competing species near the degenerate limit,, SIAM J. Math. Anal., 35 (2003), 453.  doi: 10.1137/S0036141002402189.  Google Scholar

[24]

V. Hutson, S. Martinez, K. Mischaikow and G. T. Vicker, The evolution of dispersal,, J. Math. Biol., 47 (2003), 483.  doi: 10.1007/s00285-003-0210-1.  Google Scholar

[25]

V. Hutson, K. Mischaikow and P. Poláčik, The evolution of dispersal rates in a heterogeneous time-periodic environment,, J. Math. Biol., 43 (2001), 501.  doi: 10.1007/s002850100106.  Google Scholar

[26]

M. Iida, M. Mimura and H. Ninomiya, Diffusion, cross-diffusion and competitive interaction,, J. Math. Biol., 53 (2006), 617.  doi: 10.1007/s00285-006-0013-2.  Google Scholar

[27]

M. Iida, M. Tatsuya, H, Ninomiya and E. Yanagida, Diffusion-induced extinction of a superior species in a competition system,, Japan J. Indust. Appl. Math., 15 (1998), 223.  doi: 10.1007/BF03167402.  Google Scholar

[28]

J. Jiang, X. Liang and X. Zhao, Saddle point behavior for monotone semiflows and reaction-diffusion models,, J. Differential Equations, 203 (2004), 313.  doi: 10.1016/j.jde.2004.05.002.  Google Scholar

[29]

S. Kirkland, C. K. Li and S. J. Schreiber, On the evolution of dispersal in patchy environments,, SIAM J. Appl. Math., 66 (2006), 1366.  doi: 10.1137/050628933.  Google Scholar

[30]

J. López-Gómez, Coexistence and meta-coexistence for competing species,, Houston J. Math., (2003), 483.   Google Scholar

[31]

Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species,, J. Diff. Eqs., 223 (2006), 400.   Google Scholar

[32]

Y. Lou, personal, communication., ().   Google Scholar

[33]

Y. Lou, S. Martinez and W. M. Ni, On $3\times 3$ Lotka-Volterra competition systems with cross-diffusion,, Dis. Cont. Dyn. Sys., 6 (2000), 175.   Google Scholar

[34]

Y. Lou and W. M. Ni, Diffusion, self-diffusion and cross-diffusion,, J. Diff. Eqs., 131 (1996), 79.   Google Scholar

[35]

Y. Lou and W. M. Ni, Diffusion vs. cross-diffusion: An elliptic approach,, J. Diff. Eqs., 154 (1999), 157.   Google Scholar

[36]

Y. Lou, W. M. Ni and S. Yotsutani, On a limiting system in the Lotka-Volterra competition with cross-diffusion,, Dis. Cont. Dyn. Sys., 10 (2004), 435.  doi: 10.3934/dcds.2004.10.435.  Google Scholar

[37]

Y. Lou, S. Martinez and P. Poláčik, Loops and branches of coexistence states in a Lotka-Volterra competition model,, J. Diff. Eqs., 230 (2006), 720.   Google Scholar

[38]

H. Matano and M. Mimura, Pattern formation in competition-diffusion systems in non-convex domains,, Publ. RIMS. Kyoto Univ., 19 (1983), 1049.  doi: 10.2977/prims/1195182020.  Google Scholar

[39]

M. Mimura, Stationary pattern of some density-dependent diffusion system with competitive dynamics,, Hiroshima Math. J., 11 (1981), 621.   Google Scholar

[40]

M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations,, J. Math. Biol., 9 (1980), 49.  doi: 10.1007/BF00276035.  Google Scholar

[41]

M. Mimura, Y. Nishiura, A. Tesei and T. Tsujikawa, Coexistence problem for two competing species models with density-dependent diffusion,, Hiroshima Math. J., 14 (1984), 425.   Google Scholar

[42]

J. D. Murray, "Mathematical Biology. II. Spatial Models and Biomedical Applications, $3^{nd}$,", Interdisciplinary Applied Mathematics, (2003).   Google Scholar

[43]

H. Ninomiya, Separatrices of competition-diffusion equations,, J. Math. Kyoto Univ., 35 (1995), 539.   Google Scholar

[44]

A. Okubo and S. Levin, "Diffusion and Ecological Problems: Modern Perspectives, $2^{nd}$,", Interdisciplinary Applied Mathematics, 14 (2001).   Google Scholar

[45]

S. Pacala and J. Roughgarden, Spatial heterogeneity and interspecific competition,, Theor. Popul. Biol., 21 (1982), 92.  doi: 10.1016/0040-5809(82)90008-9.  Google Scholar

[46]

A. B. Potapov and M. A. Lewis, Climate and competition: The effect of moving range boundaries on habitat invisibility,, Bull. Math. Biol., 66 (2004), 975.  doi: 10.1016/j.bulm.2003.10.010.  Google Scholar

[47]

N. Shigesada and K. Kawasaki, "Biological Invasions: Theory and Practice,", Oxford Series in Ecology and Evolution, (1997).   Google Scholar

[48]

N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species,, J. Theo. Biol., 79 (1979), 83.  doi: 10.1016/0022-5193(79)90258-3.  Google Scholar

[49]

I. Takagi, Point-condensation for a reaction-diffusion system,, J. Diff. Eqs., 61 (1986), 208.   Google Scholar

show all references

References:
[1]

J. M. Arrieta, A. N. Carvalho and A. Rodriguez-Bernal, Upper semicontinuity for attractors of parabolic problems with localized large diffusion and nonlinear boundary conditions,, J. Diff. Eqs., 168 (2000), 33.   Google Scholar

[2]

R. S. Cantrell and C. Cosner, The effect of spatial heterogeneity in population dynamics,, J. Math. Biol., 29 (1991), 315.  doi: 10.1007/BF00167155.  Google Scholar

[3]

R. S. Cantrell and C. Cosner, Should a park be an island?,, SIAM J. Appl. Math., 53 (1993), 219.  doi: 10.1137/0153014.  Google Scholar

[4]

R. S. Cantrell and C. Cosner, On the effects of spatial heterogeneity on the persistence of interacting species,, J. Math. Biol., 37 (1998), 103.  doi: 10.1007/s002850050122.  Google Scholar

[5]

R. S. Cantrell and C. Cosner, "Spatial Ecology Via Reaction-Diffusion Equations,", Series in Mathematical and Computational Biology, (2003).   Google Scholar

[6]

R. S. Cantrell, C. Cosner and V. Huston, Permanence in ecological systems with diffusion,, Proc. Roy. Soc. Edinburgh A, 123 (1993), 553.   Google Scholar

[7]

R. S. Cantrell, C. Cosner and V. Huston, Ecological models, permanence and spatial heterogeneity,, Rocky Mount. J. Math., 26 (1996), 1.  doi: 10.1216/rmjm/1181072101.  Google Scholar

[8]

R. S. Cantrell, C. Cosner and Y. Lou, Multiple reversals of competitive dominance in ecological reserves via external habitat degradation,, J. Dynam. Differential Equations, 16 (2004), 973.  doi: 10.1007/s10884-004-7831-y.  Google Scholar

[9]

A. N. Carvalho and J. K. Hale, Large diffusion with dispersion,, Nonlinear Anal., 17 (1991), 1139.  doi: 10.1016/0362-546X(91)90233-Q.  Google Scholar

[10]

Y. S. Choi, R. Lui and Y. Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with weak cross-diffusion,, Disc. Cont. Dyn. Syst. A, 9 (2003), 1193.  doi: 10.3934/dcds.2003.9.1193.  Google Scholar

[11]

E. Conway, D. Hoff and J. Smoller, Large time behavior of solutions of systems of nonlinear reaction-diffusion equations,, SIAM J. Appl. Math., 35 (1978), 1.  doi: 10.1137/0135001.  Google Scholar

[12]

J. Dockery, V. Hutson, K. Mischaikow and M. Pernarowski, The evolution of slow dispersal rates: A reaction-diffusion equations,, J. Math. Biol., 37 (1998), 61.  doi: 10.1007/s002850050120.  Google Scholar

[13]

Y. Du, Effects of a degeneracy in the competition model, Part I. Classical and generalized steady-state solutions,, J. Differential Equations, 181 (2002), 92.  doi: 10.1006/jdeq.2001.4074.  Google Scholar

[14]

Y. Du, Effects of a degeneracy in the competition model, Part II. Perturbation and dynamical behavior,, J. Differential Equations, 181 (2002), 133.  doi: 10.1006/jdeq.2001.4075.  Google Scholar

[15]

Y. Du, Realization of prescribed patterns in the competition model,, J. Differential Equations, 193 (2003), 147.  doi: 10.1016/S0022-0396(03)00056-1.  Google Scholar

[16]

J. E. Furter and J. López-Gómez, Diffusion-mediated permanence problem for a heterogeneous Lotka-Volterra competition model,, Proc. Roy. Soc. Edinburgh A, 127 (1997), 281.   Google Scholar

[17]

J. K. Hale, Large diffusivity and asymptotic behavior in parabolic system,, J. Math. Anal. Appl., 118 (1986), 455.  doi: 10.1016/0022-247X(86)90273-8.  Google Scholar

[18]

A. Hastings, Spatial heterogeneity and ecological models,, Ecology, 71 (1990), 426.  doi: 10.2307/1940296.  Google Scholar

[19]

E. E. Holmes, M. A. Lewis, J. E. Banks and R. R. Veit, Partial differential equations in ecology: Spatial interactions and population dynamics,, Ecology, 75 (1994), 17.  doi: 10.2307/1939378.  Google Scholar

[20]

V. Hutson, J. López-Gómez, K. Mischaikow and G. Vickers, Limit behavior for a competing species problem with diffusion, in Dynamical Systems and applications,, World Scientific Series Applicable Analysis, 4 (1995), 343.   Google Scholar

[21]

V. Hutson, Y. Lou and K. Mischaikow, Spatial heterogeneity of resources versus Lotka-Volterra dynamics,, J. Differential Equations, 185 (2002), 97.  doi: 10.1006/jdeq.2001.4157.  Google Scholar

[22]

V. Hutson, Y. Lou and K. Mischaikow, Convergence in competition models with small diffusion coefficients,, J. Differential Equations, 211 (2005), 135.  doi: 10.1016/j.jde.2004.06.003.  Google Scholar

[23]

V. Hutson, Y. Lou, K. Mischaikow and P. Poláčik, Competing species near the degenerate limit,, SIAM J. Math. Anal., 35 (2003), 453.  doi: 10.1137/S0036141002402189.  Google Scholar

[24]

V. Hutson, S. Martinez, K. Mischaikow and G. T. Vicker, The evolution of dispersal,, J. Math. Biol., 47 (2003), 483.  doi: 10.1007/s00285-003-0210-1.  Google Scholar

[25]

V. Hutson, K. Mischaikow and P. Poláčik, The evolution of dispersal rates in a heterogeneous time-periodic environment,, J. Math. Biol., 43 (2001), 501.  doi: 10.1007/s002850100106.  Google Scholar

[26]

M. Iida, M. Mimura and H. Ninomiya, Diffusion, cross-diffusion and competitive interaction,, J. Math. Biol., 53 (2006), 617.  doi: 10.1007/s00285-006-0013-2.  Google Scholar

[27]

M. Iida, M. Tatsuya, H, Ninomiya and E. Yanagida, Diffusion-induced extinction of a superior species in a competition system,, Japan J. Indust. Appl. Math., 15 (1998), 223.  doi: 10.1007/BF03167402.  Google Scholar

[28]

J. Jiang, X. Liang and X. Zhao, Saddle point behavior for monotone semiflows and reaction-diffusion models,, J. Differential Equations, 203 (2004), 313.  doi: 10.1016/j.jde.2004.05.002.  Google Scholar

[29]

S. Kirkland, C. K. Li and S. J. Schreiber, On the evolution of dispersal in patchy environments,, SIAM J. Appl. Math., 66 (2006), 1366.  doi: 10.1137/050628933.  Google Scholar

[30]

J. López-Gómez, Coexistence and meta-coexistence for competing species,, Houston J. Math., (2003), 483.   Google Scholar

[31]

Y. Lou, On the effects of migration and spatial heterogeneity on single and multiple species,, J. Diff. Eqs., 223 (2006), 400.   Google Scholar

[32]

Y. Lou, personal, communication., ().   Google Scholar

[33]

Y. Lou, S. Martinez and W. M. Ni, On $3\times 3$ Lotka-Volterra competition systems with cross-diffusion,, Dis. Cont. Dyn. Sys., 6 (2000), 175.   Google Scholar

[34]

Y. Lou and W. M. Ni, Diffusion, self-diffusion and cross-diffusion,, J. Diff. Eqs., 131 (1996), 79.   Google Scholar

[35]

Y. Lou and W. M. Ni, Diffusion vs. cross-diffusion: An elliptic approach,, J. Diff. Eqs., 154 (1999), 157.   Google Scholar

[36]

Y. Lou, W. M. Ni and S. Yotsutani, On a limiting system in the Lotka-Volterra competition with cross-diffusion,, Dis. Cont. Dyn. Sys., 10 (2004), 435.  doi: 10.3934/dcds.2004.10.435.  Google Scholar

[37]

Y. Lou, S. Martinez and P. Poláčik, Loops and branches of coexistence states in a Lotka-Volterra competition model,, J. Diff. Eqs., 230 (2006), 720.   Google Scholar

[38]

H. Matano and M. Mimura, Pattern formation in competition-diffusion systems in non-convex domains,, Publ. RIMS. Kyoto Univ., 19 (1983), 1049.  doi: 10.2977/prims/1195182020.  Google Scholar

[39]

M. Mimura, Stationary pattern of some density-dependent diffusion system with competitive dynamics,, Hiroshima Math. J., 11 (1981), 621.   Google Scholar

[40]

M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations,, J. Math. Biol., 9 (1980), 49.  doi: 10.1007/BF00276035.  Google Scholar

[41]

M. Mimura, Y. Nishiura, A. Tesei and T. Tsujikawa, Coexistence problem for two competing species models with density-dependent diffusion,, Hiroshima Math. J., 14 (1984), 425.   Google Scholar

[42]

J. D. Murray, "Mathematical Biology. II. Spatial Models and Biomedical Applications, $3^{nd}$,", Interdisciplinary Applied Mathematics, (2003).   Google Scholar

[43]

H. Ninomiya, Separatrices of competition-diffusion equations,, J. Math. Kyoto Univ., 35 (1995), 539.   Google Scholar

[44]

A. Okubo and S. Levin, "Diffusion and Ecological Problems: Modern Perspectives, $2^{nd}$,", Interdisciplinary Applied Mathematics, 14 (2001).   Google Scholar

[45]

S. Pacala and J. Roughgarden, Spatial heterogeneity and interspecific competition,, Theor. Popul. Biol., 21 (1982), 92.  doi: 10.1016/0040-5809(82)90008-9.  Google Scholar

[46]

A. B. Potapov and M. A. Lewis, Climate and competition: The effect of moving range boundaries on habitat invisibility,, Bull. Math. Biol., 66 (2004), 975.  doi: 10.1016/j.bulm.2003.10.010.  Google Scholar

[47]

N. Shigesada and K. Kawasaki, "Biological Invasions: Theory and Practice,", Oxford Series in Ecology and Evolution, (1997).   Google Scholar

[48]

N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species,, J. Theo. Biol., 79 (1979), 83.  doi: 10.1016/0022-5193(79)90258-3.  Google Scholar

[49]

I. Takagi, Point-condensation for a reaction-diffusion system,, J. Diff. Eqs., 61 (1986), 208.   Google Scholar

[1]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[2]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[3]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[4]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[5]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[6]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[7]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[8]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[9]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[10]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[11]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[12]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[13]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[14]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[15]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[16]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[17]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[18]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[19]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[20]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (64)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]