December  2011, 15(3): 687-705. doi: 10.3934/dcdsb.2011.15.687

Analysis of a frictional contact problem for viscoelastic materials with long memory

1. 

Jagiellonian University, Faculty of Mathematics and Computer Science, Institute of Computer Science, ul. Łojasiewicza 6, 30348 Krakow, Poland, Poland

2. 

Laboratoire de Mathématiques et Physique pour les Systèmes, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan

Received  July 2009 Revised  November 2010 Published  February 2011

We consider a mathematical model which describes the frictional contact between a deformable body and a foundation. The process is time-dependent, the material behavior is described with a viscoelastic constitutive law with long memory and the contact is modeled with subdifferential boundary conditions. We derive the variational formulation of the problem which is of the form of a hemivariational inequality with Volterra integral term for the displacement field. Then we prove existence and uniqueness results in the study of abstract inclusions as well as in the study of abstract hemivariational inequalities with Volterra integral term. The proofs are based on arguments on pseudomonotone operators, compactness and fixed point. We use the abstract results to prove the unique solvability of the frictional contact problem. Finally, we present examples of contact and frictional boundary conditions for which our results work.
Citation: Stanisław Migórski, Anna Ochal, Mircea Sofonea. Analysis of a frictional contact problem for viscoelastic materials with long memory. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 687-705. doi: 10.3934/dcdsb.2011.15.687
References:
[1]

F. H. Clarke, "Optimization and Nonsmooth Analysis,", Wiley, (1983).   Google Scholar

[2]

Z. Denkowski, S. Migórski and N. S. Papageorgiou, "An Introduction to Nonlinear Analysis: Theory,", Kluwer Academic/Plenum Publishers, (2003).   Google Scholar

[3]

Z. Denkowski, S. Migórski and N. S. Papageorgiou, "An Introduction to Nonlinear Analysis: Applications,", Kluwer Academic/Plenum Publishers, (2003).   Google Scholar

[4]

A. D. Drozdov, "Finite Elasticity and Viscoelasticity - A Course in the Nonlinear Mechanics of Solids,", World Scientific, (1996).   Google Scholar

[5]

G. Duvaut and J. L. Lions, "Inequalities in Mechanics and Physics,", Springer-Verlag, (1976).   Google Scholar

[6]

C. Eck, J. Jarušek and M. Krbec, "Unilateral Contact Problems: Variational Methods and Existence Theorems,", Pure and Applied Mathematics, 270 (2005).   Google Scholar

[7]

W. Han and M. Sofonea, "Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity,", American Mathematical Society, (2002).   Google Scholar

[8]

I. R. Ionescu, C. Dascalu and M. Campillo, Slip-weakening friction on a periodic system of faults: Spectral analysis,, Z. Angew. Math. Phys. (ZAMP), 53 (2002), 980.  doi: 10.1007/PL00012624.  Google Scholar

[9]

I. R. Ionescu, Q.-L. Nguyen and S. Wolf, Slip displacement dependent friction in dynamic elasticity,, Nonlinear Analysis, 53 (2003), 375.  doi: 10.1016/S0362-546X(02)00302-4.  Google Scholar

[10]

S. Migórski, Hemivariational inequality for a frictional contact problem in elasto-piezoelectricity,, Discrete Continuous Dynam. Syst. Ser. B, 6 (2006), 1339.  doi: 10.3934/dcdsb.2006.6.1339.  Google Scholar

[11]

S. Migórski, A. Ochal and M. Sofonea, Integrodifferential hemivariational inequalities with applications to viscoelastic frictional contact,, Mathematical Models and Methods in Applied Sciences, 18 (2008), 271.  doi: 10.1142/S021820250800267X.  Google Scholar

[12]

Z. Naniewicz and P. D. Panagiotopoulos, "Mathematical Theory of Hemivariational Inequalities and Applications,", Marcel Dekker, (1995).   Google Scholar

[13]

P. D. Panagiotopoulos, "Hemivariational Inequalities, Applications in Mechanics and Engineering,", Springer-Verlag, (1993).   Google Scholar

[14]

A. D. Rodríguez-Aros, M. Sofonea and J. M. Viaño, A class of evolutionary variational inequalities with Volterra-type integral term,, Mathematical Models and Methods in Applied Sciences, 14 (2004), 555.   Google Scholar

[15]

M. Shillor, M. Sofonea and J. J. Telega, "Models and Analysis of Quasistatic Contact,", Lecture Notes Physics, 655 (2004).   Google Scholar

[16]

M. Sofonea and A. Matei, "Variational Inequalities with Applications. A Study of Antiplane Frictional Contact Problems,", Advances in Mechanics and Mathematics, 18 (2009).   Google Scholar

[17]

M. Sofonea, A. D. Rodríguez-Aros and J. M. Viaño, A class of integro-differential variational inequalities with applications to viscoelastic contact,, Mathematical and Computer Modelling, 41 (2005), 1355.  doi: 10.1016/j.mcm.2004.01.011.  Google Scholar

[18]

E. Zeidler, "Nonlinear Functional Analysis and Applications II A/B,", Springer, (1990).   Google Scholar

show all references

References:
[1]

F. H. Clarke, "Optimization and Nonsmooth Analysis,", Wiley, (1983).   Google Scholar

[2]

Z. Denkowski, S. Migórski and N. S. Papageorgiou, "An Introduction to Nonlinear Analysis: Theory,", Kluwer Academic/Plenum Publishers, (2003).   Google Scholar

[3]

Z. Denkowski, S. Migórski and N. S. Papageorgiou, "An Introduction to Nonlinear Analysis: Applications,", Kluwer Academic/Plenum Publishers, (2003).   Google Scholar

[4]

A. D. Drozdov, "Finite Elasticity and Viscoelasticity - A Course in the Nonlinear Mechanics of Solids,", World Scientific, (1996).   Google Scholar

[5]

G. Duvaut and J. L. Lions, "Inequalities in Mechanics and Physics,", Springer-Verlag, (1976).   Google Scholar

[6]

C. Eck, J. Jarušek and M. Krbec, "Unilateral Contact Problems: Variational Methods and Existence Theorems,", Pure and Applied Mathematics, 270 (2005).   Google Scholar

[7]

W. Han and M. Sofonea, "Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity,", American Mathematical Society, (2002).   Google Scholar

[8]

I. R. Ionescu, C. Dascalu and M. Campillo, Slip-weakening friction on a periodic system of faults: Spectral analysis,, Z. Angew. Math. Phys. (ZAMP), 53 (2002), 980.  doi: 10.1007/PL00012624.  Google Scholar

[9]

I. R. Ionescu, Q.-L. Nguyen and S. Wolf, Slip displacement dependent friction in dynamic elasticity,, Nonlinear Analysis, 53 (2003), 375.  doi: 10.1016/S0362-546X(02)00302-4.  Google Scholar

[10]

S. Migórski, Hemivariational inequality for a frictional contact problem in elasto-piezoelectricity,, Discrete Continuous Dynam. Syst. Ser. B, 6 (2006), 1339.  doi: 10.3934/dcdsb.2006.6.1339.  Google Scholar

[11]

S. Migórski, A. Ochal and M. Sofonea, Integrodifferential hemivariational inequalities with applications to viscoelastic frictional contact,, Mathematical Models and Methods in Applied Sciences, 18 (2008), 271.  doi: 10.1142/S021820250800267X.  Google Scholar

[12]

Z. Naniewicz and P. D. Panagiotopoulos, "Mathematical Theory of Hemivariational Inequalities and Applications,", Marcel Dekker, (1995).   Google Scholar

[13]

P. D. Panagiotopoulos, "Hemivariational Inequalities, Applications in Mechanics and Engineering,", Springer-Verlag, (1993).   Google Scholar

[14]

A. D. Rodríguez-Aros, M. Sofonea and J. M. Viaño, A class of evolutionary variational inequalities with Volterra-type integral term,, Mathematical Models and Methods in Applied Sciences, 14 (2004), 555.   Google Scholar

[15]

M. Shillor, M. Sofonea and J. J. Telega, "Models and Analysis of Quasistatic Contact,", Lecture Notes Physics, 655 (2004).   Google Scholar

[16]

M. Sofonea and A. Matei, "Variational Inequalities with Applications. A Study of Antiplane Frictional Contact Problems,", Advances in Mechanics and Mathematics, 18 (2009).   Google Scholar

[17]

M. Sofonea, A. D. Rodríguez-Aros and J. M. Viaño, A class of integro-differential variational inequalities with applications to viscoelastic contact,, Mathematical and Computer Modelling, 41 (2005), 1355.  doi: 10.1016/j.mcm.2004.01.011.  Google Scholar

[18]

E. Zeidler, "Nonlinear Functional Analysis and Applications II A/B,", Springer, (1990).   Google Scholar

[1]

Stanislaw Migórski. Hemivariational inequality for a frictional contact problem in elasto-piezoelectricity. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1339-1356. doi: 10.3934/dcdsb.2006.6.1339

[2]

T. Diogo, P. Lima, M. Rebelo. Numerical solution of a nonlinear Abel type Volterra integral equation. Communications on Pure & Applied Analysis, 2006, 5 (2) : 277-288. doi: 10.3934/cpaa.2006.5.277

[3]

Oanh Chau, R. Oujja, Mohamed Rochdi. A mathematical analysis of a dynamical frictional contact model in thermoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 61-70. doi: 10.3934/dcdss.2008.1.61

[4]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

[5]

Zaiyun Peng, Xinmin Yang, Kok Lay Teo. On the Hölder continuity of approximate solution mappings to parametric weak generalized Ky Fan Inequality. Journal of Industrial & Management Optimization, 2015, 11 (2) : 549-562. doi: 10.3934/jimo.2015.11.549

[6]

C. R. Chen, S. J. Li. Semicontinuity of the solution set map to a set-valued weak vector variational inequality. Journal of Industrial & Management Optimization, 2007, 3 (3) : 519-528. doi: 10.3934/jimo.2007.3.519

[7]

Noboru Okazawa, Tomomi Yokota. Subdifferential operator approach to strong wellposedness of the complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 311-341. doi: 10.3934/dcds.2010.28.311

[8]

Stanislaw Migórski. A class of hemivariational inequalities for electroelastic contact problems with slip dependent friction. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 117-126. doi: 10.3934/dcdss.2008.1.117

[9]

Boumediene Abdellaoui, Fethi Mahmoudi. An improved Hardy inequality for a nonlocal operator. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1143-1157. doi: 10.3934/dcds.2016.36.1143

[10]

Lijing Xi, Yuying Zhou, Yisheng Huang. A class of quasilinear elliptic hemivariational inequality problems on unbounded domains. Journal of Industrial & Management Optimization, 2014, 10 (3) : 827-837. doi: 10.3934/jimo.2014.10.827

[11]

Stanisław Migórski. A note on optimal control problem for a hemivariational inequality modeling fluid flow. Conference Publications, 2013, 2013 (special) : 545-554. doi: 10.3934/proc.2013.2013.545

[12]

Zhenhai Liu, Stanislaw Migórski. Noncoercive damping in dynamic hemivariational inequality with application to problem of piezoelectricity. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 129-143. doi: 10.3934/dcdsb.2008.9.129

[13]

Leszek Gasiński. Optimal control problem of Bolza-type for evolution hemivariational inequality. Conference Publications, 2003, 2003 (Special) : 320-326. doi: 10.3934/proc.2003.2003.320

[14]

Marcelo M. Cavalcanti, Valéria N. Domingos Cavalcanti, Irena Lasiecka, Flávio A. Falcão Nascimento. Intrinsic decay rate estimates for the wave equation with competing viscoelastic and frictional dissipative effects. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1987-2011. doi: 10.3934/dcdsb.2014.19.1987

[15]

Patrick Ballard. Can the 'stick-slip' phenomenon be explained by a bifurcation in the steady sliding frictional contact problem?. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 363-381. doi: 10.3934/dcdss.2016001

[16]

Khalid Addi, Oanh Chau, Daniel Goeleven. On some frictional contact problems with velocity condition for elastic and visco-elastic materials. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1039-1051. doi: 10.3934/dcds.2011.31.1039

[17]

M. R. Arias, R. Benítez. Properties of solutions for nonlinear Volterra integral equations. Conference Publications, 2003, 2003 (Special) : 42-47. doi: 10.3934/proc.2003.2003.42

[18]

Dorota Bors, Andrzej Skowron, Stanisław Walczak. Systems described by Volterra type integral operators. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2401-2416. doi: 10.3934/dcdsb.2014.19.2401

[19]

Hermann Brunner. On Volterra integral operators with highly oscillatory kernels. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 915-929. doi: 10.3934/dcds.2014.34.915

[20]

Sergiu Aizicovici, Yimin Ding, N. S. Papageorgiou. Time dependent Volterra integral inclusions in Banach spaces. Discrete & Continuous Dynamical Systems - A, 1996, 2 (1) : 53-63. doi: 10.3934/dcds.1996.2.53

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (4)

[Back to Top]