December  2011, 15(3): 739-767. doi: 10.3934/dcdsb.2011.15.739

Computation of symbolic dynamics for two-dimensional piecewise-affine maps

1. 

Niels Bohrweg 1, Leiden, 2333 CA, Netherlands

2. 

Bouillonstraat 8-10, 6211 LH Maastricht, Netherlands

Received  June 2009 Revised  June 2010 Published  February 2011

In this paper we design and implement an algorithm for computing symbolic dynamics for two dimensional piecewise-affine maps. The algorithm is based on detection of periodic orbits using the Conley index and Szymczak decomposition of Conley index pair. The algorithm is also extended to deal with discontinuous maps. We compare the algorithm with the algorithm based on tangle of fixed points. We apply the algorithms to compute the symbolic dynamics and entropy bounds for the Lozi map.
Citation: Lorenzo Sella, Pieter Collins. Computation of symbolic dynamics for two-dimensional piecewise-affine maps. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 739-767. doi: 10.3934/dcdsb.2011.15.739
References:
[1]

D. Lind and B. Marcus, "An Introduction To Symbolic Dynamics And Coding,", Cambridge University Press, (1995).  doi: 10.1017/CBO9780511626302.  Google Scholar

[2]

J. Milnor and W. Thurston, On iterated maps of the interval,, in, (1342), 1986.   Google Scholar

[3]

J. P. Lampreia and S. Ramos, Trimodal maps,, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 3 (1993), 1607.  doi: 10.1142/S0218127493001276.  Google Scholar

[4]

J. P. Lampreia and S. Ramos, Kneading theory for tree maps,, Ergodic Theory and Dynamical Systems, 24 (2004), 957.  doi: 10.1017/S014338570400015X.  Google Scholar

[5]

J. L. Rocha and S. Ramos, On iterated maps of the interval with holes,, Journal of Difference Equations and Applications, 9 (2003), 319.  doi: 10.1080/1023619021000047752.  Google Scholar

[6]

L. Sella and P. Collins, "Discrete Dynamics of Two-Dimensional Nonlinear Hybrid Automata,", Hybrid Systems: Computation and Control, (2008).   Google Scholar

[7]

P. Collins, Symbolic dynamics from homoclinic tangles,, HInternational Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 12 (2002), 605.  doi: 10.1142/S0218127402004565.  Google Scholar

[8]

T. Kaczynski, K. Mischaikow and M. Mrozek, "Computational Homology,", Applied Mathematical Sciences, ().   Google Scholar

[9]

S. Day, O. Junge and M. Konstantin, Towards automated chaos verification,, EQUADIFF, (2003), 157.   Google Scholar

[10]

Z. Galias and P. Zgliczyński, Abundance of homoclinic and heteroclinic orbits and rigorous bounds for the topological entropy for the Hénon map,, Nonlinearity, 14 (2001), 909.  doi: 10.1088/0951-7715/14/5/301.  Google Scholar

[11]

A. Szymczak, The Conley index for decompositions of isolated invariant sets,, Fundamenta Mathematicae, 148 (1995), 71.   Google Scholar

[12]

P. Collins, Dynamics of surface diffeomorphisms relative to homoclinic and heteroclinic orbits,, Dynamical Systems, 19 (2004), 1.  doi: 10.1080/14689360310001623421.  Google Scholar

[13]

M. Misiurewicz, Strange attractors for the Lozi mappings,, Nonlinear Dynamics (Internat. Conf., (1979), 348.   Google Scholar

[14]

A. Hatcher, "Algebraic Topology,", Cambridge University Press, (2002).   Google Scholar

[15]

J. Munkres, "Elements of Algebraic Topology,", Addison-Wesley Publishing Company, (2002).   Google Scholar

[16]

R. Gilmore and M. Lefranc, "The Topology of Chaos," Alice in Stretch and Squeezeland,, Wiley-Interscience [John Wiley & Sons], (1984).   Google Scholar

[17]

D. Sand, Numerical computations on Lozi maps,, \url{http://topo.math.u-psud.fr/ sands/Programs/Lozi/index.html}., ().   Google Scholar

show all references

References:
[1]

D. Lind and B. Marcus, "An Introduction To Symbolic Dynamics And Coding,", Cambridge University Press, (1995).  doi: 10.1017/CBO9780511626302.  Google Scholar

[2]

J. Milnor and W. Thurston, On iterated maps of the interval,, in, (1342), 1986.   Google Scholar

[3]

J. P. Lampreia and S. Ramos, Trimodal maps,, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 3 (1993), 1607.  doi: 10.1142/S0218127493001276.  Google Scholar

[4]

J. P. Lampreia and S. Ramos, Kneading theory for tree maps,, Ergodic Theory and Dynamical Systems, 24 (2004), 957.  doi: 10.1017/S014338570400015X.  Google Scholar

[5]

J. L. Rocha and S. Ramos, On iterated maps of the interval with holes,, Journal of Difference Equations and Applications, 9 (2003), 319.  doi: 10.1080/1023619021000047752.  Google Scholar

[6]

L. Sella and P. Collins, "Discrete Dynamics of Two-Dimensional Nonlinear Hybrid Automata,", Hybrid Systems: Computation and Control, (2008).   Google Scholar

[7]

P. Collins, Symbolic dynamics from homoclinic tangles,, HInternational Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 12 (2002), 605.  doi: 10.1142/S0218127402004565.  Google Scholar

[8]

T. Kaczynski, K. Mischaikow and M. Mrozek, "Computational Homology,", Applied Mathematical Sciences, ().   Google Scholar

[9]

S. Day, O. Junge and M. Konstantin, Towards automated chaos verification,, EQUADIFF, (2003), 157.   Google Scholar

[10]

Z. Galias and P. Zgliczyński, Abundance of homoclinic and heteroclinic orbits and rigorous bounds for the topological entropy for the Hénon map,, Nonlinearity, 14 (2001), 909.  doi: 10.1088/0951-7715/14/5/301.  Google Scholar

[11]

A. Szymczak, The Conley index for decompositions of isolated invariant sets,, Fundamenta Mathematicae, 148 (1995), 71.   Google Scholar

[12]

P. Collins, Dynamics of surface diffeomorphisms relative to homoclinic and heteroclinic orbits,, Dynamical Systems, 19 (2004), 1.  doi: 10.1080/14689360310001623421.  Google Scholar

[13]

M. Misiurewicz, Strange attractors for the Lozi mappings,, Nonlinear Dynamics (Internat. Conf., (1979), 348.   Google Scholar

[14]

A. Hatcher, "Algebraic Topology,", Cambridge University Press, (2002).   Google Scholar

[15]

J. Munkres, "Elements of Algebraic Topology,", Addison-Wesley Publishing Company, (2002).   Google Scholar

[16]

R. Gilmore and M. Lefranc, "The Topology of Chaos," Alice in Stretch and Squeezeland,, Wiley-Interscience [John Wiley & Sons], (1984).   Google Scholar

[17]

D. Sand, Numerical computations on Lozi maps,, \url{http://topo.math.u-psud.fr/ sands/Programs/Lozi/index.html}., ().   Google Scholar

[1]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[2]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[3]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[4]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[5]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[6]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[7]

Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020049

[8]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[9]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[10]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[11]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[12]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[13]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[14]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[15]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[16]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[17]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[18]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[19]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[20]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (50)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]