December  2011, 15(3): 825-847. doi: 10.3934/dcdsb.2011.15.825

On a generalized Boussinesq model around a rotating obstacle: Existence of strong solutions

1. 

Universidad Nacional de Colombia-Medellín, Escuela de Matemáticas, Medellìn, A.A. 3840, Colombia

2. 

Departamento de Matemáticas, Universidad Católica del Norte, Av. Angamos 0610, Casilla 1280, Antofagasta, Chile

Received  June 2009 Revised  March 2010 Published  February 2011

The aim of this work is to prove the existence of strong solutions for a generalized Boussinesq model, with nonlinear diffusion for the equations of velocity and temperature, occupying a domain $\Omega,$ exterior to a rigid body that rotates with constant angular velocity $\omega.$
Citation: Elder J. Villamizar-Roa, Elva E. Ortega-Torres. On a generalized Boussinesq model around a rotating obstacle: Existence of strong solutions. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 825-847. doi: 10.3934/dcdsb.2011.15.825
References:
[1]

J. Bergh and J. Löfström, "Interpolation Spaces. An Introduction,", Grundlehren der Mathematischen Wissenschaften, (1976).   Google Scholar

[2]

J. L. Boldrini and S. Lorca, The initial value problem for a generalized Boussinesq model,, Nonlinear Analysis, 36 (1999), 457.  doi: 10.1016/S0362-546X(97)00635-4.  Google Scholar

[3]

P. Braz e Silva, M. A. Rojas-Medar and E. J. Villamizar-Roa, Strong solutions for the nonhomogeneous Navier-Stokes equations in unbounded domains,, Math. Methods Appl. Sci., 33 (2010), 358.   Google Scholar

[4]

L. C. F. Ferreira and E. J. Villamizar-Roa, Well-posedness and asymptotic behaviour for the convection problem in $\mathbbR^n$,, Nonlinearity, 19 (2006), 2169.  doi: 10.1088/0951-7715/19/9/011.  Google Scholar

[5]

L. C. F. Ferreira and E. J. Villamizar-Roa, On the stability problem for the Boussinesq equations in weak-$L^p$ spaces,, Communication on Pure and Applied Analysis, 9 (2010), 667.  doi: 10.3934/cpaa.2010.9.667.  Google Scholar

[6]

G. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations," Vol. II. Nonlinear Steady Problems,, Springer Tracts in Natural Nature Philosophy, 39 (1994).   Google Scholar

[7]

G. Galdi, On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications,, Handbook of Mathematical fluid dynamics, I (2002), 653.   Google Scholar

[8]

G. Galdi and A. Silvestre, Strong solutions to the Navier-Stokes equations around a rotating obstacle,, Arch. Rational Mech. Anal., 176 (2005), 331.  doi: 10.1007/s00205-004-0348-z.  Google Scholar

[9]

G. Galdi and A. Silvestre, Existence of time-periodic solutions to the Navier-Stokes equations around a moving body,, Pacific Journal of Mathematics, 223 (2006), 251.  doi: 10.2140/pjm.2006.223.251.  Google Scholar

[10]

J. Heywood, The Navier-Stokes Equations: On the existence, regularity and decay of solutions,, Indiana Univ. Math. Journal, 29 (1980), 639.  doi: 10.1512/iumj.1980.29.29048.  Google Scholar

[11]

T. Hishida, An existence theorem for the Navier-Stokes flow in the exterior of a rotating obstacle,, Arch. Rat. Mech. Anal., 150 (1999), 307.  doi: 10.1007/s002050050190.  Google Scholar

[12]

J. L. Lions and E. Magenes, "Problèmes aux Limites Non Homogènes et Applications," vol. 1,, Travaux et Recherches Mathéatiques, (1968).   Google Scholar

[13]

L. D. Landau and E. M. Lifchitz, "Theorical Physics: Fluid Mechanics,", 2nd edition, (1987).   Google Scholar

[14]

M. A. Rojas-Medar and S. A. Lorca, The equations of a viscous incompressible chemical active fluid II. Regularity of solutions,, Rev. Mat. Apl., 16 (1995), 81.   Google Scholar

show all references

References:
[1]

J. Bergh and J. Löfström, "Interpolation Spaces. An Introduction,", Grundlehren der Mathematischen Wissenschaften, (1976).   Google Scholar

[2]

J. L. Boldrini and S. Lorca, The initial value problem for a generalized Boussinesq model,, Nonlinear Analysis, 36 (1999), 457.  doi: 10.1016/S0362-546X(97)00635-4.  Google Scholar

[3]

P. Braz e Silva, M. A. Rojas-Medar and E. J. Villamizar-Roa, Strong solutions for the nonhomogeneous Navier-Stokes equations in unbounded domains,, Math. Methods Appl. Sci., 33 (2010), 358.   Google Scholar

[4]

L. C. F. Ferreira and E. J. Villamizar-Roa, Well-posedness and asymptotic behaviour for the convection problem in $\mathbbR^n$,, Nonlinearity, 19 (2006), 2169.  doi: 10.1088/0951-7715/19/9/011.  Google Scholar

[5]

L. C. F. Ferreira and E. J. Villamizar-Roa, On the stability problem for the Boussinesq equations in weak-$L^p$ spaces,, Communication on Pure and Applied Analysis, 9 (2010), 667.  doi: 10.3934/cpaa.2010.9.667.  Google Scholar

[6]

G. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations," Vol. II. Nonlinear Steady Problems,, Springer Tracts in Natural Nature Philosophy, 39 (1994).   Google Scholar

[7]

G. Galdi, On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications,, Handbook of Mathematical fluid dynamics, I (2002), 653.   Google Scholar

[8]

G. Galdi and A. Silvestre, Strong solutions to the Navier-Stokes equations around a rotating obstacle,, Arch. Rational Mech. Anal., 176 (2005), 331.  doi: 10.1007/s00205-004-0348-z.  Google Scholar

[9]

G. Galdi and A. Silvestre, Existence of time-periodic solutions to the Navier-Stokes equations around a moving body,, Pacific Journal of Mathematics, 223 (2006), 251.  doi: 10.2140/pjm.2006.223.251.  Google Scholar

[10]

J. Heywood, The Navier-Stokes Equations: On the existence, regularity and decay of solutions,, Indiana Univ. Math. Journal, 29 (1980), 639.  doi: 10.1512/iumj.1980.29.29048.  Google Scholar

[11]

T. Hishida, An existence theorem for the Navier-Stokes flow in the exterior of a rotating obstacle,, Arch. Rat. Mech. Anal., 150 (1999), 307.  doi: 10.1007/s002050050190.  Google Scholar

[12]

J. L. Lions and E. Magenes, "Problèmes aux Limites Non Homogènes et Applications," vol. 1,, Travaux et Recherches Mathéatiques, (1968).   Google Scholar

[13]

L. D. Landau and E. M. Lifchitz, "Theorical Physics: Fluid Mechanics,", 2nd edition, (1987).   Google Scholar

[14]

M. A. Rojas-Medar and S. A. Lorca, The equations of a viscous incompressible chemical active fluid II. Regularity of solutions,, Rev. Mat. Apl., 16 (1995), 81.   Google Scholar

[1]

Chun-Hsiung Hsia, Tian Ma, Shouhong Wang. Rotating Boussinesq equations: Dynamic stability and transitions. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 99-130. doi: 10.3934/dcds.2010.28.99

[2]

Yonggeun Cho, Tohru Ozawa. On small amplitude solutions to the generalized Boussinesq equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 691-711. doi: 10.3934/dcds.2007.17.691

[3]

Walter Allegretto, Yanping Lin, Shuqing Ma. Existence and long time behaviour of solutions to obstacle thermistor equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 757-780. doi: 10.3934/dcds.2002.8.757

[4]

Tong Tang, Hongjun Gao. Local strong solutions to the compressible viscous magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1617-1633. doi: 10.3934/dcdsb.2016014

[5]

Trinh Viet Duoc. Navier-Stokes-Oseen flows in the exterior of a rotating and translating obstacle. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3387-3405. doi: 10.3934/dcds.2018145

[6]

T. Tachim Medjo. Existence and uniqueness of strong periodic solutions of the primitive equations of the ocean. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1491-1508. doi: 10.3934/dcds.2010.26.1491

[7]

Youcef Amirat, Kamel Hamdache. Strong solutions to the equations of flow and heat transfer in magnetic fluids with internal rotations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3289-3320. doi: 10.3934/dcds.2013.33.3289

[8]

Jochen Merker. Strong solutions of doubly nonlinear Navier-Stokes equations. Conference Publications, 2011, 2011 (Special) : 1052-1060. doi: 10.3934/proc.2011.2011.1052

[9]

Francesca Da Lio. Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 395-415. doi: 10.3934/cpaa.2004.3.395

[10]

William Rundell. Recovering an obstacle using integral equations. Inverse Problems & Imaging, 2009, 3 (2) : 319-332. doi: 10.3934/ipi.2009.3.319

[11]

Shuguang Shao, Shu Wang, Wen-Qing Xu, Bin Han. Global existence for the 2D Navier-Stokes flow in the exterior of a moving or rotating obstacle. Kinetic & Related Models, 2016, 9 (4) : 767-776. doi: 10.3934/krm.2016015

[12]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[13]

Yan Jia, Xingwei Zhang, Bo-Qing Dong. Remarks on the blow-up criterion for smooth solutions of the Boussinesq equations with zero diffusion. Communications on Pure & Applied Analysis, 2013, 12 (2) : 923-937. doi: 10.3934/cpaa.2013.12.923

[14]

Shengfu Deng. Generalized multi-hump wave solutions of Kdv-Kdv system of Boussinesq equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3671-3716. doi: 10.3934/dcds.2019150

[15]

Tianwen Luo, Tao Tao, Liqun Zhang. Finite energy weak solutions of 2d Boussinesq equations with diffusive temperature. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 1-29. doi: 10.3934/dcds.2019230

[16]

Jianhua Huang, Tianlong Shen, Yuhong Li. Dynamics of stochastic fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2051-2067. doi: 10.3934/dcdsb.2015.20.2051

[17]

Pablo Amster, Mónica Clapp. Periodic solutions of resonant systems with rapidly rotating nonlinearities. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 373-383. doi: 10.3934/dcds.2011.31.373

[18]

D. Wirosoetisno. Navier--Stokes equations on a rapidly rotating sphere. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1251-1259. doi: 10.3934/dcdsb.2015.20.1251

[19]

Walter Allegretto, Yanping Lin, Shuqing Ma. Hölder continuous solutions of an obstacle thermistor problem. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 983-997. doi: 10.3934/dcdsb.2004.4.983

[20]

Tong Li, Hui Yin. Convergence rate to strong boundary layer solutions for generalized BBM-Burgers equations with non-convex flux. Communications on Pure & Applied Analysis, 2014, 13 (2) : 835-858. doi: 10.3934/cpaa.2014.13.835

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

[Back to Top]