December  2011, 15(3): 825-847. doi: 10.3934/dcdsb.2011.15.825

On a generalized Boussinesq model around a rotating obstacle: Existence of strong solutions

1. 

Universidad Nacional de Colombia-Medellín, Escuela de Matemáticas, Medellìn, A.A. 3840, Colombia

2. 

Departamento de Matemáticas, Universidad Católica del Norte, Av. Angamos 0610, Casilla 1280, Antofagasta, Chile

Received  June 2009 Revised  March 2010 Published  February 2011

The aim of this work is to prove the existence of strong solutions for a generalized Boussinesq model, with nonlinear diffusion for the equations of velocity and temperature, occupying a domain $\Omega,$ exterior to a rigid body that rotates with constant angular velocity $\omega.$
Citation: Elder J. Villamizar-Roa, Elva E. Ortega-Torres. On a generalized Boussinesq model around a rotating obstacle: Existence of strong solutions. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 825-847. doi: 10.3934/dcdsb.2011.15.825
References:
[1]

J. Bergh and J. Löfström, "Interpolation Spaces. An Introduction,", Grundlehren der Mathematischen Wissenschaften, (1976).   Google Scholar

[2]

J. L. Boldrini and S. Lorca, The initial value problem for a generalized Boussinesq model,, Nonlinear Analysis, 36 (1999), 457.  doi: 10.1016/S0362-546X(97)00635-4.  Google Scholar

[3]

P. Braz e Silva, M. A. Rojas-Medar and E. J. Villamizar-Roa, Strong solutions for the nonhomogeneous Navier-Stokes equations in unbounded domains,, Math. Methods Appl. Sci., 33 (2010), 358.   Google Scholar

[4]

L. C. F. Ferreira and E. J. Villamizar-Roa, Well-posedness and asymptotic behaviour for the convection problem in $\mathbbR^n$,, Nonlinearity, 19 (2006), 2169.  doi: 10.1088/0951-7715/19/9/011.  Google Scholar

[5]

L. C. F. Ferreira and E. J. Villamizar-Roa, On the stability problem for the Boussinesq equations in weak-$L^p$ spaces,, Communication on Pure and Applied Analysis, 9 (2010), 667.  doi: 10.3934/cpaa.2010.9.667.  Google Scholar

[6]

G. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations," Vol. II. Nonlinear Steady Problems,, Springer Tracts in Natural Nature Philosophy, 39 (1994).   Google Scholar

[7]

G. Galdi, On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications,, Handbook of Mathematical fluid dynamics, I (2002), 653.   Google Scholar

[8]

G. Galdi and A. Silvestre, Strong solutions to the Navier-Stokes equations around a rotating obstacle,, Arch. Rational Mech. Anal., 176 (2005), 331.  doi: 10.1007/s00205-004-0348-z.  Google Scholar

[9]

G. Galdi and A. Silvestre, Existence of time-periodic solutions to the Navier-Stokes equations around a moving body,, Pacific Journal of Mathematics, 223 (2006), 251.  doi: 10.2140/pjm.2006.223.251.  Google Scholar

[10]

J. Heywood, The Navier-Stokes Equations: On the existence, regularity and decay of solutions,, Indiana Univ. Math. Journal, 29 (1980), 639.  doi: 10.1512/iumj.1980.29.29048.  Google Scholar

[11]

T. Hishida, An existence theorem for the Navier-Stokes flow in the exterior of a rotating obstacle,, Arch. Rat. Mech. Anal., 150 (1999), 307.  doi: 10.1007/s002050050190.  Google Scholar

[12]

J. L. Lions and E. Magenes, "Problèmes aux Limites Non Homogènes et Applications," vol. 1,, Travaux et Recherches Mathéatiques, (1968).   Google Scholar

[13]

L. D. Landau and E. M. Lifchitz, "Theorical Physics: Fluid Mechanics,", 2nd edition, (1987).   Google Scholar

[14]

M. A. Rojas-Medar and S. A. Lorca, The equations of a viscous incompressible chemical active fluid II. Regularity of solutions,, Rev. Mat. Apl., 16 (1995), 81.   Google Scholar

show all references

References:
[1]

J. Bergh and J. Löfström, "Interpolation Spaces. An Introduction,", Grundlehren der Mathematischen Wissenschaften, (1976).   Google Scholar

[2]

J. L. Boldrini and S. Lorca, The initial value problem for a generalized Boussinesq model,, Nonlinear Analysis, 36 (1999), 457.  doi: 10.1016/S0362-546X(97)00635-4.  Google Scholar

[3]

P. Braz e Silva, M. A. Rojas-Medar and E. J. Villamizar-Roa, Strong solutions for the nonhomogeneous Navier-Stokes equations in unbounded domains,, Math. Methods Appl. Sci., 33 (2010), 358.   Google Scholar

[4]

L. C. F. Ferreira and E. J. Villamizar-Roa, Well-posedness and asymptotic behaviour for the convection problem in $\mathbbR^n$,, Nonlinearity, 19 (2006), 2169.  doi: 10.1088/0951-7715/19/9/011.  Google Scholar

[5]

L. C. F. Ferreira and E. J. Villamizar-Roa, On the stability problem for the Boussinesq equations in weak-$L^p$ spaces,, Communication on Pure and Applied Analysis, 9 (2010), 667.  doi: 10.3934/cpaa.2010.9.667.  Google Scholar

[6]

G. Galdi, "An Introduction to the Mathematical Theory of the Navier-Stokes Equations," Vol. II. Nonlinear Steady Problems,, Springer Tracts in Natural Nature Philosophy, 39 (1994).   Google Scholar

[7]

G. Galdi, On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications,, Handbook of Mathematical fluid dynamics, I (2002), 653.   Google Scholar

[8]

G. Galdi and A. Silvestre, Strong solutions to the Navier-Stokes equations around a rotating obstacle,, Arch. Rational Mech. Anal., 176 (2005), 331.  doi: 10.1007/s00205-004-0348-z.  Google Scholar

[9]

G. Galdi and A. Silvestre, Existence of time-periodic solutions to the Navier-Stokes equations around a moving body,, Pacific Journal of Mathematics, 223 (2006), 251.  doi: 10.2140/pjm.2006.223.251.  Google Scholar

[10]

J. Heywood, The Navier-Stokes Equations: On the existence, regularity and decay of solutions,, Indiana Univ. Math. Journal, 29 (1980), 639.  doi: 10.1512/iumj.1980.29.29048.  Google Scholar

[11]

T. Hishida, An existence theorem for the Navier-Stokes flow in the exterior of a rotating obstacle,, Arch. Rat. Mech. Anal., 150 (1999), 307.  doi: 10.1007/s002050050190.  Google Scholar

[12]

J. L. Lions and E. Magenes, "Problèmes aux Limites Non Homogènes et Applications," vol. 1,, Travaux et Recherches Mathéatiques, (1968).   Google Scholar

[13]

L. D. Landau and E. M. Lifchitz, "Theorical Physics: Fluid Mechanics,", 2nd edition, (1987).   Google Scholar

[14]

M. A. Rojas-Medar and S. A. Lorca, The equations of a viscous incompressible chemical active fluid II. Regularity of solutions,, Rev. Mat. Apl., 16 (1995), 81.   Google Scholar

[1]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[2]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[3]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[4]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[5]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[6]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[7]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[8]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[9]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[10]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[11]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[12]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[13]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[14]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[15]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[16]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[17]

Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105

[18]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[19]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[20]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (0)

[Back to Top]