December  2011, 15(3): 849-865. doi: 10.3934/dcdsb.2011.15.849

Stability of positive constant steady states and their bifurcation in a biological depletion model

1. 

College of Mathematics and Information Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China, China

Received  October 2009 Revised  August 2010 Published  February 2011

This paper is concerned with a biological depletion model in a bounded domain. The stability of the positive constant steady states is discussed. In one dimensional case, we make a detailed description for the global bifurcation structure from two positive constant solutions. The result indicates that if $d$ is properly small, the system has at least one non-constant positive steady-state. The main tools used here include the stability theory, bifurcation theory and simulations. From extensive numerical simulations, the predictions from linear theory are confirmed and the influence of parameters $d,D,\sigma$ on these patterns is depicted.
Citation: Yan'e Wang, Jianhua Wu. Stability of positive constant steady states and their bifurcation in a biological depletion model. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 849-865. doi: 10.3934/dcdsb.2011.15.849
References:
[1]

H. L. Smith and P. Waltman, "The theory of the Chemostat: Dynamics of Microbial Competition,", Cambridge University Press, (1995).  doi: 10.1017/CBO9780511530043.  Google Scholar

[2]

A. Gierer and H. Meinhardt, A theory of biological pattern formation,, Kybernetik, 12 (1972), 30.  doi: 10.1007/BF00289234.  Google Scholar

[3]

T. Erneux and E. Reiss, Brusselator isolas,, SIAM J. Appl. Math., 43 (1983), 1240.  doi: 10.1137/0143082.  Google Scholar

[4]

I. Lengyel and I. R. Epstein, Modeling of Turing structure in the Chlorite-iodide-malonic acid-starch reaction system,, Science, 251 (1991), 650.  doi: 10.1126/science.251.4994.650.  Google Scholar

[5]

J. Schnakenberg, Simple chemical reaction systems with limit cycle behavior,, J. Theor. Biol., 81 (1979), 389.  doi: 10.1016/0022-5193(79)90042-0.  Google Scholar

[6]

J. H. Wu, Global bifurcation of coexistence state for the competition model in the chemostat,, Nonlinear Anal., 39 (2000), 817.  doi: 10.1016/S0362-546X(98)00250-8.  Google Scholar

[7]

W. M. Ni and J. C. Wei, On positive solutions concentrating on spheres for the Gierer-Meinhardt system,, J. Diff. Eqns., 221 (2006), 158.  doi: 10.1016/j.jde.2005.03.004.  Google Scholar

[8]

R. Peng and M. X. Wang, Pattern formation in the Brusselator system,, J. Math. Anal. Appl., 309 (2005), 151.  doi: 10.1016/j.jmaa.2004.12.026.  Google Scholar

[9]

W. M. Ni and M. Tang, Turing patterns in the Lengyel-Epstein system for the CIMA reaction,, Transactions of the American Mathematical Society, 357 (2005), 3953.  doi: 10.1090/S0002-9947-05-04010-9.  Google Scholar

[10]

J. Wei and M. Winter, Stationary multiple spots for reaction-diffusion systems,, J. Math. Biol., 57 (2008), 53.  doi: 10.1007/s00285-007-0146-y.  Google Scholar

[11]

J. H. Wu, Global solutions of a biological depletion model,, J. Shaanxi Normal University (Nature Science Edition), 28 (2000), 26.   Google Scholar

[12]

Y. Lou and W. M. Ni, Diffusion, self-diffusion and cross-diffusion,, J. Diff. Eqns., 131 (1996), 79.  doi: 10.1006/jdeq.1996.0157.  Google Scholar

[13]

M. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues,, J. Functional Anal., 8 (1971), 321.  doi: 10.1016/0022-1236(71)90015-2.  Google Scholar

[14]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems,, J. Functional Anal., 7 (1971), 487.  doi: 10.1016/0022-1236(71)90030-9.  Google Scholar

[15]

W. M. Ni, Diffusion, cross-diffusion, and their spike-layer steady states,, Notices Amer. Math. Soc., 45 (1998), 9.   Google Scholar

[16]

I. Takagi, Point-condensation for a reaction-diffusion system,, J. Diff. Eqns., 61 (1986), 208.  doi: 10.1016/0022-0396(86)90119-1.  Google Scholar

show all references

References:
[1]

H. L. Smith and P. Waltman, "The theory of the Chemostat: Dynamics of Microbial Competition,", Cambridge University Press, (1995).  doi: 10.1017/CBO9780511530043.  Google Scholar

[2]

A. Gierer and H. Meinhardt, A theory of biological pattern formation,, Kybernetik, 12 (1972), 30.  doi: 10.1007/BF00289234.  Google Scholar

[3]

T. Erneux and E. Reiss, Brusselator isolas,, SIAM J. Appl. Math., 43 (1983), 1240.  doi: 10.1137/0143082.  Google Scholar

[4]

I. Lengyel and I. R. Epstein, Modeling of Turing structure in the Chlorite-iodide-malonic acid-starch reaction system,, Science, 251 (1991), 650.  doi: 10.1126/science.251.4994.650.  Google Scholar

[5]

J. Schnakenberg, Simple chemical reaction systems with limit cycle behavior,, J. Theor. Biol., 81 (1979), 389.  doi: 10.1016/0022-5193(79)90042-0.  Google Scholar

[6]

J. H. Wu, Global bifurcation of coexistence state for the competition model in the chemostat,, Nonlinear Anal., 39 (2000), 817.  doi: 10.1016/S0362-546X(98)00250-8.  Google Scholar

[7]

W. M. Ni and J. C. Wei, On positive solutions concentrating on spheres for the Gierer-Meinhardt system,, J. Diff. Eqns., 221 (2006), 158.  doi: 10.1016/j.jde.2005.03.004.  Google Scholar

[8]

R. Peng and M. X. Wang, Pattern formation in the Brusselator system,, J. Math. Anal. Appl., 309 (2005), 151.  doi: 10.1016/j.jmaa.2004.12.026.  Google Scholar

[9]

W. M. Ni and M. Tang, Turing patterns in the Lengyel-Epstein system for the CIMA reaction,, Transactions of the American Mathematical Society, 357 (2005), 3953.  doi: 10.1090/S0002-9947-05-04010-9.  Google Scholar

[10]

J. Wei and M. Winter, Stationary multiple spots for reaction-diffusion systems,, J. Math. Biol., 57 (2008), 53.  doi: 10.1007/s00285-007-0146-y.  Google Scholar

[11]

J. H. Wu, Global solutions of a biological depletion model,, J. Shaanxi Normal University (Nature Science Edition), 28 (2000), 26.   Google Scholar

[12]

Y. Lou and W. M. Ni, Diffusion, self-diffusion and cross-diffusion,, J. Diff. Eqns., 131 (1996), 79.  doi: 10.1006/jdeq.1996.0157.  Google Scholar

[13]

M. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues,, J. Functional Anal., 8 (1971), 321.  doi: 10.1016/0022-1236(71)90015-2.  Google Scholar

[14]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems,, J. Functional Anal., 7 (1971), 487.  doi: 10.1016/0022-1236(71)90030-9.  Google Scholar

[15]

W. M. Ni, Diffusion, cross-diffusion, and their spike-layer steady states,, Notices Amer. Math. Soc., 45 (1998), 9.   Google Scholar

[16]

I. Takagi, Point-condensation for a reaction-diffusion system,, J. Diff. Eqns., 61 (1986), 208.  doi: 10.1016/0022-0396(86)90119-1.  Google Scholar

[1]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[2]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[3]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[4]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275

[5]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[6]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[7]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[8]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[9]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[10]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[11]

Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117

[12]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[13]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[14]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[15]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[16]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[17]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[18]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[19]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[20]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]