December  2011, 15(3): 849-865. doi: 10.3934/dcdsb.2011.15.849

Stability of positive constant steady states and their bifurcation in a biological depletion model

1. 

College of Mathematics and Information Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China, China

Received  October 2009 Revised  August 2010 Published  February 2011

This paper is concerned with a biological depletion model in a bounded domain. The stability of the positive constant steady states is discussed. In one dimensional case, we make a detailed description for the global bifurcation structure from two positive constant solutions. The result indicates that if $d$ is properly small, the system has at least one non-constant positive steady-state. The main tools used here include the stability theory, bifurcation theory and simulations. From extensive numerical simulations, the predictions from linear theory are confirmed and the influence of parameters $d,D,\sigma$ on these patterns is depicted.
Citation: Yan'e Wang, Jianhua Wu. Stability of positive constant steady states and their bifurcation in a biological depletion model. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 849-865. doi: 10.3934/dcdsb.2011.15.849
References:
[1]

H. L. Smith and P. Waltman, "The theory of the Chemostat: Dynamics of Microbial Competition," Cambridge University Press, 1995. doi: 10.1017/CBO9780511530043.

[2]

A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik, 12 (1972), 30-39. doi: 10.1007/BF00289234.

[3]

T. Erneux and E. Reiss, Brusselator isolas, SIAM J. Appl. Math., 43 (1983), 1240-1246. doi: 10.1137/0143082.

[4]

I. Lengyel and I. R. Epstein, Modeling of Turing structure in the Chlorite-iodide-malonic acid-starch reaction system, Science, 251 (1991), 650-652. doi: 10.1126/science.251.4994.650.

[5]

J. Schnakenberg, Simple chemical reaction systems with limit cycle behavior, J. Theor. Biol., 81 (1979), 389-400. doi: 10.1016/0022-5193(79)90042-0.

[6]

J. H. Wu, Global bifurcation of coexistence state for the competition model in the chemostat, Nonlinear Anal., 39 (2000), 817-835. doi: 10.1016/S0362-546X(98)00250-8.

[7]

W. M. Ni and J. C. Wei, On positive solutions concentrating on spheres for the Gierer-Meinhardt system, J. Diff. Eqns., 221 (2006), 158-189. doi: 10.1016/j.jde.2005.03.004.

[8]

R. Peng and M. X. Wang, Pattern formation in the Brusselator system, J. Math. Anal. Appl., 309 (2005), 151-166. doi: 10.1016/j.jmaa.2004.12.026.

[9]

W. M. Ni and M. Tang, Turing patterns in the Lengyel-Epstein system for the CIMA reaction, Transactions of the American Mathematical Society, 357 (2005), 3953-3969. doi: 10.1090/S0002-9947-05-04010-9.

[10]

J. Wei and M. Winter, Stationary multiple spots for reaction-diffusion systems, J. Math. Biol., 57 (2008), 53-89. doi: 10.1007/s00285-007-0146-y.

[11]

J. H. Wu, Global solutions of a biological depletion model, J. Shaanxi Normal University (Nature Science Edition), 28 (2000), 26-29.

[12]

Y. Lou and W. M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Diff. Eqns., 131 (1996), 79-131. doi: 10.1006/jdeq.1996.0157.

[13]

M. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Anal., 8 (1971), 321-340. doi: 10.1016/0022-1236(71)90015-2.

[14]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Functional Anal., 7 (1971), 487-513. doi: 10.1016/0022-1236(71)90030-9.

[15]

W. M. Ni, Diffusion, cross-diffusion, and their spike-layer steady states, Notices Amer. Math. Soc., 45 (1998), 9-18.

[16]

I. Takagi, Point-condensation for a reaction-diffusion system, J. Diff. Eqns., 61 (1986), 208-249. doi: 10.1016/0022-0396(86)90119-1.

show all references

References:
[1]

H. L. Smith and P. Waltman, "The theory of the Chemostat: Dynamics of Microbial Competition," Cambridge University Press, 1995. doi: 10.1017/CBO9780511530043.

[2]

A. Gierer and H. Meinhardt, A theory of biological pattern formation, Kybernetik, 12 (1972), 30-39. doi: 10.1007/BF00289234.

[3]

T. Erneux and E. Reiss, Brusselator isolas, SIAM J. Appl. Math., 43 (1983), 1240-1246. doi: 10.1137/0143082.

[4]

I. Lengyel and I. R. Epstein, Modeling of Turing structure in the Chlorite-iodide-malonic acid-starch reaction system, Science, 251 (1991), 650-652. doi: 10.1126/science.251.4994.650.

[5]

J. Schnakenberg, Simple chemical reaction systems with limit cycle behavior, J. Theor. Biol., 81 (1979), 389-400. doi: 10.1016/0022-5193(79)90042-0.

[6]

J. H. Wu, Global bifurcation of coexistence state for the competition model in the chemostat, Nonlinear Anal., 39 (2000), 817-835. doi: 10.1016/S0362-546X(98)00250-8.

[7]

W. M. Ni and J. C. Wei, On positive solutions concentrating on spheres for the Gierer-Meinhardt system, J. Diff. Eqns., 221 (2006), 158-189. doi: 10.1016/j.jde.2005.03.004.

[8]

R. Peng and M. X. Wang, Pattern formation in the Brusselator system, J. Math. Anal. Appl., 309 (2005), 151-166. doi: 10.1016/j.jmaa.2004.12.026.

[9]

W. M. Ni and M. Tang, Turing patterns in the Lengyel-Epstein system for the CIMA reaction, Transactions of the American Mathematical Society, 357 (2005), 3953-3969. doi: 10.1090/S0002-9947-05-04010-9.

[10]

J. Wei and M. Winter, Stationary multiple spots for reaction-diffusion systems, J. Math. Biol., 57 (2008), 53-89. doi: 10.1007/s00285-007-0146-y.

[11]

J. H. Wu, Global solutions of a biological depletion model, J. Shaanxi Normal University (Nature Science Edition), 28 (2000), 26-29.

[12]

Y. Lou and W. M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Diff. Eqns., 131 (1996), 79-131. doi: 10.1006/jdeq.1996.0157.

[13]

M. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Functional Anal., 8 (1971), 321-340. doi: 10.1016/0022-1236(71)90015-2.

[14]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Functional Anal., 7 (1971), 487-513. doi: 10.1016/0022-1236(71)90030-9.

[15]

W. M. Ni, Diffusion, cross-diffusion, and their spike-layer steady states, Notices Amer. Math. Soc., 45 (1998), 9-18.

[16]

I. Takagi, Point-condensation for a reaction-diffusion system, J. Diff. Eqns., 61 (1986), 208-249. doi: 10.1016/0022-0396(86)90119-1.

[1]

Xiaomei Feng, Zhidong Teng, Kai Wang, Fengqin Zhang. Backward bifurcation and global stability in an epidemic model with treatment and vaccination. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 999-1025. doi: 10.3934/dcdsb.2014.19.999

[2]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[3]

Meihua Wei, Yanling Li, Xi Wei. Stability and bifurcation with singularity for a glycolysis model under no-flux boundary condition. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 5203-5224. doi: 10.3934/dcdsb.2019129

[4]

Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325-346. doi: 10.3934/mbe.2006.3.325

[5]

Shengqin Xu, Chuncheng Wang, Dejun Fan. Stability and bifurcation in an age-structured model with stocking rate and time delays. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2535-2549. doi: 10.3934/dcdsb.2018264

[6]

Juping Ji, Lin Wang. Bifurcation and stability analysis for a nutrient-phytoplankton model with toxic effects. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3073-3081. doi: 10.3934/dcdss.2020135

[7]

Hui Miao, Zhidong Teng, Chengjun Kang. Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2365-2387. doi: 10.3934/dcdsb.2017121

[8]

Li Ma, Shangjiang Guo. Bifurcation and stability of a two-species diffusive Lotka-Volterra model. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1205-1232. doi: 10.3934/cpaa.2020056

[9]

Yaodan Huang, Zhengce Zhang, Bei Hu. Bifurcation from stability to instability for a free boundary tumor model with angiogenesis. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2473-2510. doi: 10.3934/dcds.2019105

[10]

C. Burgos, J.-C. Cortés, L. Shaikhet, R.-J. Villanueva. A delayed nonlinear stochastic model for cocaine consumption: Stability analysis and simulation using real data. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1233-1244. doi: 10.3934/dcdss.2020356

[11]

Mengxin Chen, Ranchao Wu, Yancong Xu. Dynamics of a depletion-type Gierer-Meinhardt model with Langmuir-Hinshelwood reaction scheme. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2275-2312. doi: 10.3934/dcdsb.2021132

[12]

Nicolas Vauchelet. Numerical simulation of a kinetic model for chemotaxis. Kinetic and Related Models, 2010, 3 (3) : 501-528. doi: 10.3934/krm.2010.3.501

[13]

Hongying Shu, Lin Wang. Global stability and backward bifurcation of a general viral infection model with virus-driven proliferation of target cells. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1749-1768. doi: 10.3934/dcdsb.2014.19.1749

[14]

Kousuke Kuto. Stability and Hopf bifurcation of coexistence steady-states to an SKT model in spatially heterogeneous environment. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 489-509. doi: 10.3934/dcds.2009.24.489

[15]

Ming Liu, Dongpo Hu, Fanwei Meng. Stability and bifurcation analysis in a delay-induced predator-prey model with Michaelis-Menten type predator harvesting. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3197-3222. doi: 10.3934/dcdss.2020259

[16]

Shu Li, Zhenzhen Li, Binxiang Dai. Stability and Hopf bifurcation in a prey-predator model with memory-based diffusion. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022025

[17]

Ana I. Muñoz, José Ignacio Tello. Mathematical analysis and numerical simulation of a model of morphogenesis. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1035-1059. doi: 10.3934/mbe.2011.8.1035

[18]

Dieter Armbruster, Christian Ringhofer, Andrea Thatcher. A kinetic model for an agent based market simulation. Networks and Heterogeneous Media, 2015, 10 (3) : 527-542. doi: 10.3934/nhm.2015.10.527

[19]

Rolf Rannacher. A short course on numerical simulation of viscous flow: Discretization, optimization and stability analysis. Discrete and Continuous Dynamical Systems - S, 2012, 5 (6) : 1147-1194. doi: 10.3934/dcdss.2012.5.1147

[20]

Shubo Zhao, Ping Liu, Mingchao Jiang. Stability and bifurcation analysis in a chemotaxis bistable growth system. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1165-1174. doi: 10.3934/dcdss.2017063

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (79)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]