December  2011, 15(3): 867-892. doi: 10.3934/dcdsb.2011.15.867

Asymptotic speed of propagation and traveling wavefronts for a SIR epidemic model

1. 

School of Mathematics, South China Normal University, Guangzhou 510631, China

Received  January 2010 Revised  August 2010 Published  February 2011

In this article, the well-posedness of the initial value problem, the existence of traveling wavefronts and the asymptotic speed of propagation for a SIR epidemic model with stage structure and nonlocal response are studied. We further show that the minimum wave speed in fact coincides with the asymptotic speed of propagation.
Citation: Chufen Wu, Peixuan Weng. Asymptotic speed of propagation and traveling wavefronts for a SIR epidemic model. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 867-892. doi: 10.3934/dcdsb.2011.15.867
References:
[1]

D. G. Aronson, The asymptotic speed of propagation of a simple epidemic,, in, (1977), 1.   Google Scholar

[2]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation,, in, 446 (1975), 5.   Google Scholar

[3]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics,, Adv. in Math., 30 (1978), 33.  doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[4]

J. Al-Omari, S. A. Gourley, Monotone travelling fronts in an age-stuctured reaction-diffusion model for a single species,, J. Math. Biol., 45 (2002), 294.  doi: 10.1007/s002850200159.  Google Scholar

[5]

H. Berestycki, F. Hamel and L. Roques, Analisis of the periodically fragmented environment model: I-Species persistence,, J. Math. Biol., 51 (2005), 75.  doi: 10.1007/s00285-004-0313-3.  Google Scholar

[6]

H. Berestycki, F. Hamel and L. Roques, Analisis of the periodically fragmented environment model: II-Biological invasions and pulsating travelling fronts,, J. Math. Pures Appl., 84 (2005), 1101.  doi: 10.1016/j.matpur.2004.10.006.  Google Scholar

[7]

V. Capasso and S. L. Paveri-Fontana, A mathematical model for the 1973 cholera epidemic in the European Mediterranean region,, Revue d'Epidemiologic et de Sant$\acutee$ Publique, 27 (1979), 121.   Google Scholar

[8]

O. Diekmann, Run for your life. A note on the asymptotic speed of propagation of an epidemic,, J. Diff. Eqns., 33 (1979), 58.  doi: 10.1016/0022-0396(79)90080-9.  Google Scholar

[9]

J. Fang, J. Wei and X.-Q. Zhao, Spatial dynamics of a nonlocal and time-delayed reaction-diffusion system,, J. Diff. Eqns., 245 (2008), 2749.  doi: 10.1016/j.jde.2008.09.001.  Google Scholar

[10]

J. Fang and X.-Q. Zhao, Existence and uniqueness of traveling waves for non-monotone integral equations with applications,, J. Diff. Eqns., 248 (2010), 2199.  doi: 10.1016/j.jde.2010.01.009.  Google Scholar

[11]

R. A. Fisher, The advance of advantageous genes,, Ann. Eugenics., 7 (1937), 355.   Google Scholar

[12]

S. A. Gourley and Y. Kuang, Wavefront and global stability in a time-delayed population model with stage structure,, Proc. R. Soc. Lond. Ser. A., 459 (2003), 1563.  doi: 10.1098/rspa.2002.1094.  Google Scholar

[13]

S. A. Gourley and J. H. Wu, Delayed non-local diffusive sysrems in biological invasion and disease spread,, Nonlinear dynamics and evolution equations, 48 (2006), 137.   Google Scholar

[14]

A. N. Kolmogorov, I. G. Petrowsky and N. S. Piscounov, Etude de l'equation de la diffusion avec croissance de la quantité de matiere et son application a un probleme biologique,, Univ. Bull. Moscow. Serie. Intern. Sec. A., 1 (1937), 1.   Google Scholar

[15]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with application,, Commun. Pure Appl. Math., 60 (2007), 1.   Google Scholar

[16]

X. Liang, Y. Yi and X.-Q. Zhao, Spreading speeds and traveling waves for periodic evolution systems,, J. Diff. Eqns., 231 (2006), 57.  doi: 10.1016/j.jde.2006.04.010.  Google Scholar

[17]

R. Lui, Biological growth and spread modeled by systems of recursions. I. Mathematical theory,, Math. Biosci., 93 (1989), 269.  doi: 10.1016/0025-5564(89)90026-6.  Google Scholar

[18]

R. Lui, Biological growth and spread modeled by systems of recursions. II. Biological theory,, Math. Biosci., 93 (1989), 297.  doi: 10.1016/0025-5564(89)90027-8.  Google Scholar

[19]

S. W. Ma, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem,, J. Diff. Eqns., 171 (2001), 294.  doi: 10.1006/jdeq.2000.3846.  Google Scholar

[20]

J. Radcliffe and L. Rass, The asymptotic speed of propagation of the deterministic non-reducible n-type epidemic,, J. Math. Biol., 23 (1986), 341.  doi: 10.1007/BF00275253.  Google Scholar

[21]

L. Rass and J. Radcliffe, "Spatial Deterministic Epidemics, Mathematical Surveys and Monographs,", AMS, (2003).   Google Scholar

[22]

K. W. Schaaf, Asymptotic behavior and traveling wave solutions for parabolic functional differential equations,, Trans. Amer. Math. Soc., 302 (1987), 587.   Google Scholar

[23]

H. R. Thieme, Asymptotic estimates of the solutions of nonlinear integral equatons and asymptotic speeds for the spread of populatins,, J. Reine Angew. Math., 306 (1979), 94.  doi: 10.1515/crll.1979.306.94.  Google Scholar

[24]

H. R. Thieme, Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread,, J. Math. Biol., 8 (1979), 173.  doi: 10.1007/BF00279720.  Google Scholar

[25]

H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion model,, J. Diff. Eqns., 195 (2003), 430.  doi: 10.1016/S0022-0396(03)00175-X.  Google Scholar

[26]

X. H. Tian and R. Xu, Stability analysis of a delayed SIR epidemic with stage structure and nonlinear incidence,, Discrete Dynamics in Nature and Society, (2009).   Google Scholar

[27]

H. F. Weinberger, Long-time behavior of a class of biological models,, SIAM J. Math. Anal., 13 (1982), 353.  doi: 10.1137/0513028.  Google Scholar

[28]

H. F. Weinberger, On spreading speeds and traveling waves for growth and migration models in a periodic habitat,, J. Math. Biol., 45 (2002), 511.  doi: 10.1007/s00285-002-0169-3.  Google Scholar

[29]

H. F. Weinberger, M. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models,, J. Math. Biol., 45 (2002), 183.  doi: 10.1007/s002850200145.  Google Scholar

[30]

P. X. Weng, H. X. Huang and J. H. Wu, Asymptotic speed of propagation of wave fronts in a lattice delay differential equation with global interaction,, IMA J. Appl. Maths., 68 (2003), 409.  doi: 10.1093/imamat/68.4.409.  Google Scholar

[31]

P. X. Weng and X.-Q. Zhao, Spreading speed and traveling waves for a multi-type SIS epidemic model,, J. Diff. Eqns., 229 (2006), 270.  doi: 10.1016/j.jde.2006.01.020.  Google Scholar

[32]

P. X. Weng and Z. T. Xu, Survey on progress for asymptotic speed of propagation and traveling wave solutions of some types of evolution equations(Chinese),, Advance in Mathematics, 39 (2009), 1.   Google Scholar

[33]

C. F. Wu and P. X. Weng, Traveling wavefronts for a SIS epidemic model with stage structure,, Dynamic Systems and Applications, 19 (2010), 125.   Google Scholar

[34]

X.-Q. Zhao and W. D. Wang, Fisher waves in an epidemic model,, Discrete Continuous Dynam. Systems - B, 4 (2004), 1117.   Google Scholar

[35]

X.-Q. Zhao, Spatial dynamics of some evolution system in biology, "Recent Progress on Reaction-Diffusion Systems and Viscosity Solutions,", World Scientific Publishing Co. Pte. Ltd. Singapore, (2009), 332.   Google Scholar

[36]

X.-Q. Zhao and D. M. Xiao, The asymptotic speed of spread and traveling waves for a vector disease model,, J. Dynam. Diff. Eqns., 18 (2006), 1001.   Google Scholar

show all references

References:
[1]

D. G. Aronson, The asymptotic speed of propagation of a simple epidemic,, in, (1977), 1.   Google Scholar

[2]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation,, in, 446 (1975), 5.   Google Scholar

[3]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics,, Adv. in Math., 30 (1978), 33.  doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[4]

J. Al-Omari, S. A. Gourley, Monotone travelling fronts in an age-stuctured reaction-diffusion model for a single species,, J. Math. Biol., 45 (2002), 294.  doi: 10.1007/s002850200159.  Google Scholar

[5]

H. Berestycki, F. Hamel and L. Roques, Analisis of the periodically fragmented environment model: I-Species persistence,, J. Math. Biol., 51 (2005), 75.  doi: 10.1007/s00285-004-0313-3.  Google Scholar

[6]

H. Berestycki, F. Hamel and L. Roques, Analisis of the periodically fragmented environment model: II-Biological invasions and pulsating travelling fronts,, J. Math. Pures Appl., 84 (2005), 1101.  doi: 10.1016/j.matpur.2004.10.006.  Google Scholar

[7]

V. Capasso and S. L. Paveri-Fontana, A mathematical model for the 1973 cholera epidemic in the European Mediterranean region,, Revue d'Epidemiologic et de Sant$\acutee$ Publique, 27 (1979), 121.   Google Scholar

[8]

O. Diekmann, Run for your life. A note on the asymptotic speed of propagation of an epidemic,, J. Diff. Eqns., 33 (1979), 58.  doi: 10.1016/0022-0396(79)90080-9.  Google Scholar

[9]

J. Fang, J. Wei and X.-Q. Zhao, Spatial dynamics of a nonlocal and time-delayed reaction-diffusion system,, J. Diff. Eqns., 245 (2008), 2749.  doi: 10.1016/j.jde.2008.09.001.  Google Scholar

[10]

J. Fang and X.-Q. Zhao, Existence and uniqueness of traveling waves for non-monotone integral equations with applications,, J. Diff. Eqns., 248 (2010), 2199.  doi: 10.1016/j.jde.2010.01.009.  Google Scholar

[11]

R. A. Fisher, The advance of advantageous genes,, Ann. Eugenics., 7 (1937), 355.   Google Scholar

[12]

S. A. Gourley and Y. Kuang, Wavefront and global stability in a time-delayed population model with stage structure,, Proc. R. Soc. Lond. Ser. A., 459 (2003), 1563.  doi: 10.1098/rspa.2002.1094.  Google Scholar

[13]

S. A. Gourley and J. H. Wu, Delayed non-local diffusive sysrems in biological invasion and disease spread,, Nonlinear dynamics and evolution equations, 48 (2006), 137.   Google Scholar

[14]

A. N. Kolmogorov, I. G. Petrowsky and N. S. Piscounov, Etude de l'equation de la diffusion avec croissance de la quantité de matiere et son application a un probleme biologique,, Univ. Bull. Moscow. Serie. Intern. Sec. A., 1 (1937), 1.   Google Scholar

[15]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with application,, Commun. Pure Appl. Math., 60 (2007), 1.   Google Scholar

[16]

X. Liang, Y. Yi and X.-Q. Zhao, Spreading speeds and traveling waves for periodic evolution systems,, J. Diff. Eqns., 231 (2006), 57.  doi: 10.1016/j.jde.2006.04.010.  Google Scholar

[17]

R. Lui, Biological growth and spread modeled by systems of recursions. I. Mathematical theory,, Math. Biosci., 93 (1989), 269.  doi: 10.1016/0025-5564(89)90026-6.  Google Scholar

[18]

R. Lui, Biological growth and spread modeled by systems of recursions. II. Biological theory,, Math. Biosci., 93 (1989), 297.  doi: 10.1016/0025-5564(89)90027-8.  Google Scholar

[19]

S. W. Ma, Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem,, J. Diff. Eqns., 171 (2001), 294.  doi: 10.1006/jdeq.2000.3846.  Google Scholar

[20]

J. Radcliffe and L. Rass, The asymptotic speed of propagation of the deterministic non-reducible n-type epidemic,, J. Math. Biol., 23 (1986), 341.  doi: 10.1007/BF00275253.  Google Scholar

[21]

L. Rass and J. Radcliffe, "Spatial Deterministic Epidemics, Mathematical Surveys and Monographs,", AMS, (2003).   Google Scholar

[22]

K. W. Schaaf, Asymptotic behavior and traveling wave solutions for parabolic functional differential equations,, Trans. Amer. Math. Soc., 302 (1987), 587.   Google Scholar

[23]

H. R. Thieme, Asymptotic estimates of the solutions of nonlinear integral equatons and asymptotic speeds for the spread of populatins,, J. Reine Angew. Math., 306 (1979), 94.  doi: 10.1515/crll.1979.306.94.  Google Scholar

[24]

H. R. Thieme, Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread,, J. Math. Biol., 8 (1979), 173.  doi: 10.1007/BF00279720.  Google Scholar

[25]

H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion model,, J. Diff. Eqns., 195 (2003), 430.  doi: 10.1016/S0022-0396(03)00175-X.  Google Scholar

[26]

X. H. Tian and R. Xu, Stability analysis of a delayed SIR epidemic with stage structure and nonlinear incidence,, Discrete Dynamics in Nature and Society, (2009).   Google Scholar

[27]

H. F. Weinberger, Long-time behavior of a class of biological models,, SIAM J. Math. Anal., 13 (1982), 353.  doi: 10.1137/0513028.  Google Scholar

[28]

H. F. Weinberger, On spreading speeds and traveling waves for growth and migration models in a periodic habitat,, J. Math. Biol., 45 (2002), 511.  doi: 10.1007/s00285-002-0169-3.  Google Scholar

[29]

H. F. Weinberger, M. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models,, J. Math. Biol., 45 (2002), 183.  doi: 10.1007/s002850200145.  Google Scholar

[30]

P. X. Weng, H. X. Huang and J. H. Wu, Asymptotic speed of propagation of wave fronts in a lattice delay differential equation with global interaction,, IMA J. Appl. Maths., 68 (2003), 409.  doi: 10.1093/imamat/68.4.409.  Google Scholar

[31]

P. X. Weng and X.-Q. Zhao, Spreading speed and traveling waves for a multi-type SIS epidemic model,, J. Diff. Eqns., 229 (2006), 270.  doi: 10.1016/j.jde.2006.01.020.  Google Scholar

[32]

P. X. Weng and Z. T. Xu, Survey on progress for asymptotic speed of propagation and traveling wave solutions of some types of evolution equations(Chinese),, Advance in Mathematics, 39 (2009), 1.   Google Scholar

[33]

C. F. Wu and P. X. Weng, Traveling wavefronts for a SIS epidemic model with stage structure,, Dynamic Systems and Applications, 19 (2010), 125.   Google Scholar

[34]

X.-Q. Zhao and W. D. Wang, Fisher waves in an epidemic model,, Discrete Continuous Dynam. Systems - B, 4 (2004), 1117.   Google Scholar

[35]

X.-Q. Zhao, Spatial dynamics of some evolution system in biology, "Recent Progress on Reaction-Diffusion Systems and Viscosity Solutions,", World Scientific Publishing Co. Pte. Ltd. Singapore, (2009), 332.   Google Scholar

[36]

X.-Q. Zhao and D. M. Xiao, The asymptotic speed of spread and traveling waves for a vector disease model,, J. Dynam. Diff. Eqns., 18 (2006), 1001.   Google Scholar

[1]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[2]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[3]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[4]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[5]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[6]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[7]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[8]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[9]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[10]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[11]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[12]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[13]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[14]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[15]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[16]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[17]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[18]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[19]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[20]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]