December  2011, 15(3): 893-914. doi: 10.3934/dcdsb.2011.15.893

Oscillations in a plasmid turbidostat model with delayed feedback control

1. 

College of Science, Shanghai University for Science and Technology, Shanghai 200093, China

2. 

Department of Mathematics, Tongji University, Shanghai 200092, China

3. 

R&D department, shanghai RAAS blood products Co,. Ltd, Shanghai 200245, China

Received  February 2010 Revised  September 2010 Published  February 2011

A model of competition between plasmid-bearing and plasmid-free organisms in a turbidostat with delayed feedback control is investigated. By choosing the delay in the measurement of the optical sensor to the turbidity of the fluid as a bifurcation parameter, we show that Hopf bifurcations can occur as the delay crosses some critical values. The direction and stability of the bifurcating periodic solutions are determined by the normal form theory and the center manifold theorem. Computer simulations illustrate the results.
Citation: Sanling Yuan, Yongli Song, Junhui Li. Oscillations in a plasmid turbidostat model with delayed feedback control. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 893-914. doi: 10.3934/dcdsb.2011.15.893
References:
[1]

P. De Leenheer and H. L. Smith, Feedback control for the chemostat,, J. Math. Biol., 46 (2003), 48.  doi: 10.1007/s00285-002-0170-x.  Google Scholar

[2]

S. B. Hsu and P. Waltman, A survey of mathematical models of competition with an inhibitor,, Math. Biosci., 187 (2004), 53.  doi: 10.1016/j.mbs.2003.07.004.  Google Scholar

[3]

S. B. Hsu, P. Waltman and G. S. K. Wolkowicz, Global analysis of a model of plasmid-bearing, plasmid-free competition in a chemostat,, J. Math. Biol., 32 (1994), 731.  doi: 10.1007/BF00163024.  Google Scholar

[4]

S. B. Hsu and P. Waltman, Competition between plasmid-bearing and plasmid-free organisms in selective media,, Chem. Eng. Sci., 52 (1997), 23.  doi: 10.1016/S0009-2509(96)00385-5.  Google Scholar

[5]

R. E. Lenski and S. Hattingh, Coexistence of two competitors on one resource and one inhibitor: A chemostat model based on bacteria and antibiotics,, J. Theor. Biol., 122 (1986), 83.  doi: 10.1016/S0022-5193(86)80226-0.  Google Scholar

[6]

T. K. Luo and S. B. Hsu, Global Analysis of a Model of plasmid-bearing, plasmid-free Competition in a chemostat with inhibitions,, J. Math. Biol., 34 (1995), 41.  doi: 10.1007/BF00180136.  Google Scholar

[7]

S. B. Hsu and P. Waltman, Analysis of a model of two competitors in a chemostat with an external inhibitor,, SIAM J. Appl. Math., 52 (1992), 528.  doi: 10.1137/0152029.  Google Scholar

[8]

S. B. Hsu and P. Waltman, Competition in the chemostat when one competitor produces a toxin,, J. Ind. Appl. Math., 15 (1998), 471.  doi: 10.1007/BF03167323.  Google Scholar

[9]

J. P. Grover, "Resource Competition,'', Chapman & Hall, (1997).   Google Scholar

[10]

D. Tilman, "Resource Competition and Community Structure,'', Princeton U. P., (1982).   Google Scholar

[11]

J. Flegr, Two distinct types of natural selection in turbidostat-like and chemostat-like ecosystems,, J. Theoret. Biol., 188 (1997), 121.  doi: 10.1006/jtbi.1997.0458.  Google Scholar

[12]

B. Li, Competition in a turbidostat for an inhibitory nutrient,, Journal of Biological Dynamics, 2 (2008), 208.  doi: 10.1080/17513750802018345.  Google Scholar

[13]

N. S. Panikov, "Microbial Growth Kinetics,'', Chapman & Hall, (1995).   Google Scholar

[14]

M. L. Shuler and F. Kargi, "Bioprocess Engineering, Basic Concepts,'', Prentice Hall, (1992).   Google Scholar

[15]

K. Gopalsamy, "Stability and Oscillations in Delay Differential Equations of Population Dynamics,'', Boston: Kluwer Academic Publishers, (1992).   Google Scholar

[16]

J. Hale and S. Lunel, "Introduction to Functional Differential Equations,'', New York: Spring-Verlag, (1993).   Google Scholar

[17]

Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics,'', Boston: Academic Press, (1993).   Google Scholar

[18]

B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, "Theory and Applications of Hopf Bifurcation,'', Cambridge University Press, (1981).   Google Scholar

[19]

D. F. Ryder and D. DiBiasio, An operational strategy for unstable recombinant DNA cultures,, Biotechnology and Bioengineering, 26 (1984), 942.  doi: 10.1002/bit.260260819.  Google Scholar

[20]

G. Stephanopoulis and G. Lapidus, Chemostat dynamics of plasmid-bearing plasmid-free mixed recombinant cultures,, Chem. Engin. Sci., 43 (1988), 49.  doi: 10.1016/0009-2509(88)87125-2.  Google Scholar

[21]

S. B. Hsu and C. C. Li, A discrete-delayed model with plasmid-bearing, plalmid-free competition in a chemostat,, Discrete Continuous Dynam. Systems - B, 5 (2005), 699.   Google Scholar

[22]

Z. Lu and K. P. Hadeler, Model of plasmid-bearing, plasmid-free competition in the chemostat with nutrient recycling and an inhibitor,, Math. Biosci., 148 (1998), 147.  doi: 10.1016/S0025-5564(97)10010-4.  Google Scholar

[23]

S. Ai, Periodic solution in a chemostat of competition between plasmid-bearing and plasmid-free organisms in a chemostat with an inhibitor,, J. Math. Biol., 42 (2001), 71.  doi: 10.1007/PL00000073.  Google Scholar

[24]

S. Yuan, D. Xiao and M. Han, Competition between plasmid-bearing and plasmid-free organisms in a chemostat with nutrient recycling and an inhibitor,, Math. Biosci., 202 (2006), 1.  doi: 10.1016/j.mbs.2006.04.003.  Google Scholar

[25]

S. Yuan, Y. Zhao and A. Xiao, Competition between plasmid-bearing and plasmid-free organisms in a chemostat with pulsed input and washout,, Mathematical Problems in Engneeing, 2009 (2046).  doi: 10.1155/2009/204632.  Google Scholar

[26]

S. Yuan, W. Zhang and M. Han, Global asymptotic behavior in chemostat-type competition models with delay,, Nonlinear Analysis: Real World Applications, 10 (2009), 1305.  doi: 10.1016/j.nonrwa.2008.01.009.  Google Scholar

[27]

Z. Xiang and X. Song, A model of competition between plasmid-bearing and plasmid-free organisms in a chemostat with periodic input,, Chaos, 32 (2007), 1419.  doi: 10.1016/j.chaos.2005.11.069.  Google Scholar

[28]

J. Wu, H. Nie and G. S. K. Wolkowicz, The effect of inhibitor on the plasmid-bearing and plasmid-free model in the unstirred chemostat,, SIAM J. Appl. Math., 38 (2007), 1860.  doi: 10.1137/050627514.  Google Scholar

[29]

O. Tagashira and T. Hara, Delayed feedback control for a chemostat model,, Math. Biosci., 201 (2006), 101.  doi: 10.1016/j.mbs.2005.12.014.  Google Scholar

[30]

O. Tagashira, Permanent coexistence in chemostat models with delayed feedback control,, Nonlinear Analysis: Real World Applications, 10 (2009), 1443.  doi: 10.1016/j.nonrwa.2008.01.015.  Google Scholar

[31]

F. Mazenc and M. Malisoff, Stabilization of a chemostat model with Haldane growth functions and a delay in the measurements,, Automatica, 46 (2010), 1428.  doi: 10.1016/j.automatica.2010.06.012.  Google Scholar

show all references

References:
[1]

P. De Leenheer and H. L. Smith, Feedback control for the chemostat,, J. Math. Biol., 46 (2003), 48.  doi: 10.1007/s00285-002-0170-x.  Google Scholar

[2]

S. B. Hsu and P. Waltman, A survey of mathematical models of competition with an inhibitor,, Math. Biosci., 187 (2004), 53.  doi: 10.1016/j.mbs.2003.07.004.  Google Scholar

[3]

S. B. Hsu, P. Waltman and G. S. K. Wolkowicz, Global analysis of a model of plasmid-bearing, plasmid-free competition in a chemostat,, J. Math. Biol., 32 (1994), 731.  doi: 10.1007/BF00163024.  Google Scholar

[4]

S. B. Hsu and P. Waltman, Competition between plasmid-bearing and plasmid-free organisms in selective media,, Chem. Eng. Sci., 52 (1997), 23.  doi: 10.1016/S0009-2509(96)00385-5.  Google Scholar

[5]

R. E. Lenski and S. Hattingh, Coexistence of two competitors on one resource and one inhibitor: A chemostat model based on bacteria and antibiotics,, J. Theor. Biol., 122 (1986), 83.  doi: 10.1016/S0022-5193(86)80226-0.  Google Scholar

[6]

T. K. Luo and S. B. Hsu, Global Analysis of a Model of plasmid-bearing, plasmid-free Competition in a chemostat with inhibitions,, J. Math. Biol., 34 (1995), 41.  doi: 10.1007/BF00180136.  Google Scholar

[7]

S. B. Hsu and P. Waltman, Analysis of a model of two competitors in a chemostat with an external inhibitor,, SIAM J. Appl. Math., 52 (1992), 528.  doi: 10.1137/0152029.  Google Scholar

[8]

S. B. Hsu and P. Waltman, Competition in the chemostat when one competitor produces a toxin,, J. Ind. Appl. Math., 15 (1998), 471.  doi: 10.1007/BF03167323.  Google Scholar

[9]

J. P. Grover, "Resource Competition,'', Chapman & Hall, (1997).   Google Scholar

[10]

D. Tilman, "Resource Competition and Community Structure,'', Princeton U. P., (1982).   Google Scholar

[11]

J. Flegr, Two distinct types of natural selection in turbidostat-like and chemostat-like ecosystems,, J. Theoret. Biol., 188 (1997), 121.  doi: 10.1006/jtbi.1997.0458.  Google Scholar

[12]

B. Li, Competition in a turbidostat for an inhibitory nutrient,, Journal of Biological Dynamics, 2 (2008), 208.  doi: 10.1080/17513750802018345.  Google Scholar

[13]

N. S. Panikov, "Microbial Growth Kinetics,'', Chapman & Hall, (1995).   Google Scholar

[14]

M. L. Shuler and F. Kargi, "Bioprocess Engineering, Basic Concepts,'', Prentice Hall, (1992).   Google Scholar

[15]

K. Gopalsamy, "Stability and Oscillations in Delay Differential Equations of Population Dynamics,'', Boston: Kluwer Academic Publishers, (1992).   Google Scholar

[16]

J. Hale and S. Lunel, "Introduction to Functional Differential Equations,'', New York: Spring-Verlag, (1993).   Google Scholar

[17]

Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics,'', Boston: Academic Press, (1993).   Google Scholar

[18]

B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, "Theory and Applications of Hopf Bifurcation,'', Cambridge University Press, (1981).   Google Scholar

[19]

D. F. Ryder and D. DiBiasio, An operational strategy for unstable recombinant DNA cultures,, Biotechnology and Bioengineering, 26 (1984), 942.  doi: 10.1002/bit.260260819.  Google Scholar

[20]

G. Stephanopoulis and G. Lapidus, Chemostat dynamics of plasmid-bearing plasmid-free mixed recombinant cultures,, Chem. Engin. Sci., 43 (1988), 49.  doi: 10.1016/0009-2509(88)87125-2.  Google Scholar

[21]

S. B. Hsu and C. C. Li, A discrete-delayed model with plasmid-bearing, plalmid-free competition in a chemostat,, Discrete Continuous Dynam. Systems - B, 5 (2005), 699.   Google Scholar

[22]

Z. Lu and K. P. Hadeler, Model of plasmid-bearing, plasmid-free competition in the chemostat with nutrient recycling and an inhibitor,, Math. Biosci., 148 (1998), 147.  doi: 10.1016/S0025-5564(97)10010-4.  Google Scholar

[23]

S. Ai, Periodic solution in a chemostat of competition between plasmid-bearing and plasmid-free organisms in a chemostat with an inhibitor,, J. Math. Biol., 42 (2001), 71.  doi: 10.1007/PL00000073.  Google Scholar

[24]

S. Yuan, D. Xiao and M. Han, Competition between plasmid-bearing and plasmid-free organisms in a chemostat with nutrient recycling and an inhibitor,, Math. Biosci., 202 (2006), 1.  doi: 10.1016/j.mbs.2006.04.003.  Google Scholar

[25]

S. Yuan, Y. Zhao and A. Xiao, Competition between plasmid-bearing and plasmid-free organisms in a chemostat with pulsed input and washout,, Mathematical Problems in Engneeing, 2009 (2046).  doi: 10.1155/2009/204632.  Google Scholar

[26]

S. Yuan, W. Zhang and M. Han, Global asymptotic behavior in chemostat-type competition models with delay,, Nonlinear Analysis: Real World Applications, 10 (2009), 1305.  doi: 10.1016/j.nonrwa.2008.01.009.  Google Scholar

[27]

Z. Xiang and X. Song, A model of competition between plasmid-bearing and plasmid-free organisms in a chemostat with periodic input,, Chaos, 32 (2007), 1419.  doi: 10.1016/j.chaos.2005.11.069.  Google Scholar

[28]

J. Wu, H. Nie and G. S. K. Wolkowicz, The effect of inhibitor on the plasmid-bearing and plasmid-free model in the unstirred chemostat,, SIAM J. Appl. Math., 38 (2007), 1860.  doi: 10.1137/050627514.  Google Scholar

[29]

O. Tagashira and T. Hara, Delayed feedback control for a chemostat model,, Math. Biosci., 201 (2006), 101.  doi: 10.1016/j.mbs.2005.12.014.  Google Scholar

[30]

O. Tagashira, Permanent coexistence in chemostat models with delayed feedback control,, Nonlinear Analysis: Real World Applications, 10 (2009), 1443.  doi: 10.1016/j.nonrwa.2008.01.015.  Google Scholar

[31]

F. Mazenc and M. Malisoff, Stabilization of a chemostat model with Haldane growth functions and a delay in the measurements,, Automatica, 46 (2010), 1428.  doi: 10.1016/j.automatica.2010.06.012.  Google Scholar

[1]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[2]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[3]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113

[4]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[5]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[6]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[7]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[8]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[9]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[10]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[11]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[12]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[13]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[14]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[15]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[16]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[17]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[18]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[19]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[20]

Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (50)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]