Citation: |
[1] |
P. De Leenheer and H. L. Smith, Feedback control for the chemostat, J. Math. Biol., 46 (2003), 48-70.doi: 10.1007/s00285-002-0170-x. |
[2] |
S. B. Hsu and P. Waltman, A survey of mathematical models of competition with an inhibitor, Math. Biosci., 187 (2004), 53-91.doi: 10.1016/j.mbs.2003.07.004. |
[3] |
S. B. Hsu, P. Waltman and G. S. K. Wolkowicz, Global analysis of a model of plasmid-bearing, plasmid-free competition in a chemostat, J. Math. Biol., 32 (1994), 731-742.doi: 10.1007/BF00163024. |
[4] |
S. B. Hsu and P. Waltman, Competition between plasmid-bearing and plasmid-free organisms in selective media, Chem. Eng. Sci., 52 (1997), 23-35.doi: 10.1016/S0009-2509(96)00385-5. |
[5] |
R. E. Lenski and S. Hattingh, Coexistence of two competitors on one resource and one inhibitor: A chemostat model based on bacteria and antibiotics, J. Theor. Biol., 122 (1986), 83-93.doi: 10.1016/S0022-5193(86)80226-0. |
[6] |
T. K. Luo and S. B. Hsu, Global Analysis of a Model of plasmid-bearing, plasmid-free Competition in a chemostat with inhibitions, J. Math. Biol., 34 (1995), 41-76.doi: 10.1007/BF00180136. |
[7] |
S. B. Hsu and P. Waltman, Analysis of a model of two competitors in a chemostat with an external inhibitor, SIAM J. Appl. Math., 52 (1992), 528-540.doi: 10.1137/0152029. |
[8] |
S. B. Hsu and P. Waltman, Competition in the chemostat when one competitor produces a toxin, J. Ind. Appl. Math., 15 (1998), 471-490.doi: 10.1007/BF03167323. |
[9] |
J. P. Grover, "Resource Competition,'' Chapman & Hall, 1997. |
[10] |
D. Tilman, "Resource Competition and Community Structure,'' Princeton U. P., Princeton, N. J., 1982. |
[11] |
J. Flegr, Two distinct types of natural selection in turbidostat-like and chemostat-like ecosystems, J. Theoret. Biol., 188 (1997), 121-126.doi: 10.1006/jtbi.1997.0458. |
[12] |
B. Li, Competition in a turbidostat for an inhibitory nutrient, Journal of Biological Dynamics, 2 (2008), 208-220.doi: 10.1080/17513750802018345. |
[13] |
N. S. Panikov, "Microbial Growth Kinetics,'' Chapman & Hall, New York, 1995. |
[14] |
M. L. Shuler and F. Kargi, "Bioprocess Engineering, Basic Concepts,'' Prentice Hall, Englewood Cliffs, New Jersey, 1992. |
[15] |
K. Gopalsamy, "Stability and Oscillations in Delay Differential Equations of Population Dynamics,'' Boston: Kluwer Academic Publishers, 1992. |
[16] |
J. Hale and S. Lunel, "Introduction to Functional Differential Equations,'' New York: Spring-Verlag, 1993. |
[17] |
Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics,'' Boston: Academic Press, 1993. |
[18] |
B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, "Theory and Applications of Hopf Bifurcation,'' Cambridge University Press, Cambridge, 1981. |
[19] |
D. F. Ryder and D. DiBiasio, An operational strategy for unstable recombinant DNA cultures, Biotechnology and Bioengineering, 26 (1984), 942-957.doi: 10.1002/bit.260260819. |
[20] |
G. Stephanopoulis and G. Lapidus, Chemostat dynamics of plasmid-bearing plasmid-free mixed recombinant cultures, Chem. Engin. Sci., 43 (1988), 49-57.doi: 10.1016/0009-2509(88)87125-2. |
[21] |
S. B. Hsu and C. C. Li, A discrete-delayed model with plasmid-bearing, plalmid-free competition in a chemostat, Discrete Continuous Dynam. Systems - B, 5 (2005), 699-718. |
[22] |
Z. Lu and K. P. Hadeler, Model of plasmid-bearing, plasmid-free competition in the chemostat with nutrient recycling and an inhibitor, Math. Biosci., 148 (1998), 147-159.doi: 10.1016/S0025-5564(97)10010-4. |
[23] |
S. Ai, Periodic solution in a chemostat of competition between plasmid-bearing and plasmid-free organisms in a chemostat with an inhibitor, J. Math. Biol., 42 (2001), 71-94.doi: 10.1007/PL00000073. |
[24] |
S. Yuan, D. Xiao and M. Han, Competition between plasmid-bearing and plasmid-free organisms in a chemostat with nutrient recycling and an inhibitor, Math. Biosci., 202 (2006), 1-28.doi: 10.1016/j.mbs.2006.04.003. |
[25] |
S. Yuan, Y. Zhao and A. Xiao, Competition between plasmid-bearing and plasmid-free organisms in a chemostat with pulsed input and washout, Mathematical Problems in Engneeing, Volume 2009, Article ID 204632, 17 pages.doi: 10.1155/2009/204632. |
[26] |
S. Yuan, W. Zhang and M. Han, Global asymptotic behavior in chemostat-type competition models with delay, Nonlinear Analysis: Real World Applications, 10 (2009), 1305-1320.doi: 10.1016/j.nonrwa.2008.01.009. |
[27] |
Z. Xiang and X. Song, A model of competition between plasmid-bearing and plasmid-free organisms in a chemostat with periodic input, Chaos, Solitons and Fractals, 32 (2007), 1419-1428.doi: 10.1016/j.chaos.2005.11.069. |
[28] |
J. Wu, H. Nie and G. S. K. Wolkowicz, The effect of inhibitor on the plasmid-bearing and plasmid-free model in the unstirred chemostat, SIAM J. Appl. Math., 38 (2007), 1860-1885.doi: 10.1137/050627514. |
[29] |
O. Tagashira and T. Hara, Delayed feedback control for a chemostat model, Math. Biosci., 201 (2006), 101-112.doi: 10.1016/j.mbs.2005.12.014. |
[30] |
O. Tagashira, Permanent coexistence in chemostat models with delayed feedback control, Nonlinear Analysis: Real World Applications, 10 (2009), 1443-1452.doi: 10.1016/j.nonrwa.2008.01.015. |
[31] |
F. Mazenc and M. Malisoff, Stabilization of a chemostat model with Haldane growth functions and a delay in the measurements, Automatica, 46 (2010), 1428-1436.doi: 10.1016/j.automatica.2010.06.012. |