June  2011, 15(4): 917-934. doi: 10.3934/dcdsb.2011.15.917

Multilayer Saint-Venant equations over movable beds

1. 

LAGA, Université Paris 13, 99 Av J.B. Clement, 93430 Villetaneuse, France, France

2. 

Laboratoire d’Hydraulique Saint-Venant, 6 Quai Watier, BP 49, 78401 Chatou, France

3. 

School of Engineering and Computing Sciences, University of Durham, South Road, Durham DH1 3LE, United Kingdom

Received  April 2010 Revised  September 2010 Published  March 2011

We introduce a multilayer model to solve three-dimensional sediment transport by wind-driven shallow water flows. The proposed multilayer model avoids the expensive Navier-Stokes equations and captures stratified horizontal flow velocities. Forcing terms are included in the system to model momentum exchanges between the considered layers. The topography frictions are included in the bottom layer and the wind shear stresses are acting on the top layer. To model the bedload transport we consider an Exner equation for morphological evolution accounting for the velocity field on the bottom layer. The coupled equations form a system of conservation laws with source terms. As a numerical solver, we apply a kinetic scheme using the finite volume discretization. Preliminary numerical results are presented to demonstrate the performance of the proposed multilayer model and to confirm its capability to provide efficient simulations for sediment transport by wind-driven shallow water flows. Comparison between results obtained using the multilayer model and those obtained using the single-layer model are also presented.
Citation: Emmanuel Audusse, Fayssal Benkhaldoun, Jacques Sainte-Marie, Mohammed Seaid. Multilayer Saint-Venant equations over movable beds. Discrete and Continuous Dynamical Systems - B, 2011, 15 (4) : 917-934. doi: 10.3934/dcdsb.2011.15.917
References:
[1]

E. Audusse and M. O. Bristeau, A well-balanced positivity preserving second order scheme for shallow water flows on unstructured meshes, JCP, 206 (2005), 311-333. doi: doi:10.1016/j.jcp.2004.12.016.

[2]

E. Audusse, F. Bouchut, M. O. Bristeau, R. Klein and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows, SIAM J. Sci. Comp., 25 (2004), 2050-2065. doi: doi:10.1137/S1064827503431090.

[3]

E. Audusse, M. O. Bristeau, B. Perthame and J. Sainte-Marie, "A Multilayer Saint-Venant Model With Mass Exchange: Derivation and Numerical Validation," M2AN, 2010, in press.

[4]

F. Benkhaldoun, S. Sahmim and M. Seaid, A two-dimensional finite volume morphodynamic model on unstructured triangular grids, Int. J. Num. Meth. Fluids, 63 (2010), 1296-1327. in press.

[5]

F. Bouchut and T. Morales de Luna, An entropy satisfying scheme for two-layer shallow water equations with uncoupled treatment, M2AN, 42 (2008), 683-698.

[6]

F. Benkhaldoun, S. Sahmim and M. Seaid, Solution of the sediment transport equations using a finite volume method based on sign matrix, SIAM J. Sci. Comp., 31 (2009), 2866-2889. doi: doi:10.1137/080727634.

[7]

A. Bermúdez, C. Rodríguez and M. A. Vilar, Solving shallow water equations by a mixed implicit finite element method, IMA J Numer Anal., 11 (1991), 79-97. doi: doi:10.1093/imanum/11.1.79.

[8]

M. J. Castro, J. Macías and C. Parés, A Q-scheme for a class of coupled conservation laws with source term. Application to a two-layer 1d shallow water system, M2AN, 35 (2001), 107-127.

[9]

A. Crotogino and K. P. Holz, Numerical movable-bed models for practical engineering, Applied Mathematical Modelling, 8 (1984), 45-49. doi: doi:10.1016/0307-904X(84)90176-8.

[10]

J. A. Dutton, "The Ceaseless Wind: An Introduction to the Theory of Atmospheric Motion," Dover Publications Inc, 1987.

[11]

A. J. Grass, "Sediment Transport by Waves and Currents," SERC London Cent. Mar. Technol. Report No: FL29, 1981.

[12]

J. Hudson and P. K. Sweby, Formations for numerically approximating hyperbolic systems governing sediment transport, J. Scientific Computing, 19 (2003), 225-252. doi: doi:10.1023/A:1025304008907.

[13]

E. Meyer-Peter and R. Müller, Formulas for bed-load transport, In: Report on 2nd meeting on international association on hydraulic structures research, Stockholm., 8 (1948), 39-64.

[14]

E. Miglio, A. Quarteroni and F. Saleri, Finite element approximation of quasi-3D shallow water equations, Computer Methods in Applied Mechanics and Engineering, 174 (1999), 355-369. doi: doi:10.1016/S0045-7825(98)00304-1.

[15]

B. Perthame, "Kinetic Formulation of Conservation Laws," Oxford University Press, 2004.

[16]

D. Pritchard and A. J. Hogg, On sediment transport under dam-break flow, J. Fluid Mech., 473 (2002), 265-274. doi: doi:10.1017/S0022112002002550.

[17]

G. Rosatti and L. Fraccarollo, A well-balanced approach for flows over mobile-bed with high sediment-transport, J. Comput. Physics, 220 (2006), 312-338. doi: doi:10.1016/j.jcp.2006.05.012.

[18]

G. K. Vallis, "Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation," Cambridge University Press, 2006. doi: doi:10.1017/CBO9780511790447.

show all references

References:
[1]

E. Audusse and M. O. Bristeau, A well-balanced positivity preserving second order scheme for shallow water flows on unstructured meshes, JCP, 206 (2005), 311-333. doi: doi:10.1016/j.jcp.2004.12.016.

[2]

E. Audusse, F. Bouchut, M. O. Bristeau, R. Klein and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows, SIAM J. Sci. Comp., 25 (2004), 2050-2065. doi: doi:10.1137/S1064827503431090.

[3]

E. Audusse, M. O. Bristeau, B. Perthame and J. Sainte-Marie, "A Multilayer Saint-Venant Model With Mass Exchange: Derivation and Numerical Validation," M2AN, 2010, in press.

[4]

F. Benkhaldoun, S. Sahmim and M. Seaid, A two-dimensional finite volume morphodynamic model on unstructured triangular grids, Int. J. Num. Meth. Fluids, 63 (2010), 1296-1327. in press.

[5]

F. Bouchut and T. Morales de Luna, An entropy satisfying scheme for two-layer shallow water equations with uncoupled treatment, M2AN, 42 (2008), 683-698.

[6]

F. Benkhaldoun, S. Sahmim and M. Seaid, Solution of the sediment transport equations using a finite volume method based on sign matrix, SIAM J. Sci. Comp., 31 (2009), 2866-2889. doi: doi:10.1137/080727634.

[7]

A. Bermúdez, C. Rodríguez and M. A. Vilar, Solving shallow water equations by a mixed implicit finite element method, IMA J Numer Anal., 11 (1991), 79-97. doi: doi:10.1093/imanum/11.1.79.

[8]

M. J. Castro, J. Macías and C. Parés, A Q-scheme for a class of coupled conservation laws with source term. Application to a two-layer 1d shallow water system, M2AN, 35 (2001), 107-127.

[9]

A. Crotogino and K. P. Holz, Numerical movable-bed models for practical engineering, Applied Mathematical Modelling, 8 (1984), 45-49. doi: doi:10.1016/0307-904X(84)90176-8.

[10]

J. A. Dutton, "The Ceaseless Wind: An Introduction to the Theory of Atmospheric Motion," Dover Publications Inc, 1987.

[11]

A. J. Grass, "Sediment Transport by Waves and Currents," SERC London Cent. Mar. Technol. Report No: FL29, 1981.

[12]

J. Hudson and P. K. Sweby, Formations for numerically approximating hyperbolic systems governing sediment transport, J. Scientific Computing, 19 (2003), 225-252. doi: doi:10.1023/A:1025304008907.

[13]

E. Meyer-Peter and R. Müller, Formulas for bed-load transport, In: Report on 2nd meeting on international association on hydraulic structures research, Stockholm., 8 (1948), 39-64.

[14]

E. Miglio, A. Quarteroni and F. Saleri, Finite element approximation of quasi-3D shallow water equations, Computer Methods in Applied Mechanics and Engineering, 174 (1999), 355-369. doi: doi:10.1016/S0045-7825(98)00304-1.

[15]

B. Perthame, "Kinetic Formulation of Conservation Laws," Oxford University Press, 2004.

[16]

D. Pritchard and A. J. Hogg, On sediment transport under dam-break flow, J. Fluid Mech., 473 (2002), 265-274. doi: doi:10.1017/S0022112002002550.

[17]

G. Rosatti and L. Fraccarollo, A well-balanced approach for flows over mobile-bed with high sediment-transport, J. Comput. Physics, 220 (2006), 312-338. doi: doi:10.1016/j.jcp.2006.05.012.

[18]

G. K. Vallis, "Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation," Cambridge University Press, 2006. doi: doi:10.1017/CBO9780511790447.

[1]

E. Audusse. A multilayer Saint-Venant model: Derivation and numerical validation. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 189-214. doi: 10.3934/dcdsb.2005.5.189

[2]

Georges Bastin, Jean-Michel Coron, Brigitte d'Andréa-Novel. On Lyapunov stability of linearised Saint-Venant equations for a sloping channel. Networks and Heterogeneous Media, 2009, 4 (2) : 177-187. doi: 10.3934/nhm.2009.4.177

[3]

Marie-Odile Bristeau, Jacques Sainte-Marie. Derivation of a non-hydrostatic shallow water model; Comparison with Saint-Venant and Boussinesq systems. Discrete and Continuous Dynamical Systems - B, 2008, 10 (4) : 733-759. doi: 10.3934/dcdsb.2008.10.733

[4]

Hassen Arfaoui, Faker Ben Belgacem, Henda El Fekih, Jean-Pierre Raymond. Boundary stabilizability of the linearized viscous Saint-Venant system. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 491-511. doi: 10.3934/dcdsb.2011.15.491

[5]

Jean-Frédéric Gerbeau, Benoit Perthame. Derivation of viscous Saint-Venant system for laminar shallow water; Numerical validation. Discrete and Continuous Dynamical Systems - B, 2001, 1 (1) : 89-102. doi: 10.3934/dcdsb.2001.1.89

[6]

Jingwei Hu, Shi Jin. On kinetic flux vector splitting schemes for quantum Euler equations. Kinetic and Related Models, 2011, 4 (2) : 517-530. doi: 10.3934/krm.2011.4.517

[7]

Casimir Emako, Farah Kanbar, Christian Klingenberg, Min Tang. A criterion for asymptotic preserving schemes of kinetic equations to be uniformly stationary preserving. Kinetic and Related Models, 2021, 14 (5) : 847-866. doi: 10.3934/krm.2021026

[8]

Charles Nguyen, Stephen Pankavich. A one-dimensional kinetic model of plasma dynamics with a transport field. Evolution Equations and Control Theory, 2014, 3 (4) : 681-698. doi: 10.3934/eect.2014.3.681

[9]

Andrey Itkin, Alexander Lipton, Dmitry Muravey. Multilayer heat equations: Application to finance. Frontiers of Mathematical Finance, 2022, 1 (1) : 99-135. doi: 10.3934/fmf.2021004

[10]

Wolfgang Wagner. Some properties of the kinetic equation for electron transport in semiconductors. Kinetic and Related Models, 2013, 6 (4) : 955-967. doi: 10.3934/krm.2013.6.955

[11]

Emeric Bouin, Jean Dolbeault, Christian Schmeiser. Diffusion and kinetic transport with very weak confinement. Kinetic and Related Models, 2020, 13 (2) : 345-371. doi: 10.3934/krm.2020012

[12]

Hélène Hivert. Numerical schemes for kinetic equation with diffusion limit and anomalous time scale. Kinetic and Related Models, 2018, 11 (2) : 409-439. doi: 10.3934/krm.2018019

[13]

Guillaume Bal, Alexandre Jollivet. Boundary control for transport equations. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022014

[14]

Reiner Henseler, Michael Herrmann, Barbara Niethammer, Juan J. L. Velázquez. A kinetic model for grain growth. Kinetic and Related Models, 2008, 1 (4) : 591-617. doi: 10.3934/krm.2008.1.591

[15]

Tomasz Komorowski. Long time asymptotics of a degenerate linear kinetic transport equation. Kinetic and Related Models, 2014, 7 (1) : 79-108. doi: 10.3934/krm.2014.7.79

[16]

Nassif Ghoussoub. A variational principle for nonlinear transport equations. Communications on Pure and Applied Analysis, 2005, 4 (4) : 735-742. doi: 10.3934/cpaa.2005.4.735

[17]

Fabio Camilli, Raul De Maio. Memory effects in measure transport equations. Kinetic and Related Models, 2019, 12 (6) : 1229-1245. doi: 10.3934/krm.2019047

[18]

Nicolas Vauchelet. Numerical simulation of a kinetic model for chemotaxis. Kinetic and Related Models, 2010, 3 (3) : 501-528. doi: 10.3934/krm.2010.3.501

[19]

Anaïs Crestetto, Nicolas Crouseilles, Mohammed Lemou. Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles. Kinetic and Related Models, 2012, 5 (4) : 787-816. doi: 10.3934/krm.2012.5.787

[20]

Yaozhong Hu, Yanghui Liu, David Nualart. Taylor schemes for rough differential equations and fractional diffusions. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3115-3162. doi: 10.3934/dcdsb.2016090

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (153)
  • HTML views (0)
  • Cited by (7)

[Back to Top]