January  2011, 15(1): 93-112. doi: 10.3934/dcdsb.2011.15.93

Bifurcations of an SIRS epidemic model with nonlinear incidence rate

1. 

Department of Applied Mathematics and Mechanics, University of Science and Technology Beijing, Beijing 100083, China

2. 

Department of Mathematics, East China Normal University, Shanghai 200062, China

3. 

Department of Applied Mathematics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083

4. 

Department of Mathematics, The University of Miami, P.O. Box 249085, Coral Gables, Florida 33124

Received  December 2009 Revised  July 2010 Published  October 2010

The main purpose of this paper is to explore the dynamics of an epidemic model with a general nonlinear incidence $\beta SI^p/(1+\alpha I^q)$. The existence and stability of multiple endemic equilibria of the epidemic model are analyzed. Local bifurcation theory is applied to explore the rich dynamical behavior of the model. Normal forms of the model are derived for different types of bifurcations, including Hopf and Bogdanov-Takens bifurcations. Concretely speaking, the first Lyapunov coefficient is computed to determine various types of Hopf bifurcations. Next, with the help of the Bogdanov-Takens normal form, a family of homoclinic orbits is arising when a Hopf and a saddle-node bifurcation merge. Finally, some numerical results and simulations are presented to illustrate these theoretical results.
Citation: Zhixing Hu, Ping Bi, Wanbiao Ma, Shigui Ruan. Bifurcations of an SIRS epidemic model with nonlinear incidence rate. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 93-112. doi: 10.3934/dcdsb.2011.15.93
References:
[1]

M. E. Alexander and S. M. Moghadas, Periodicity in an epidemic model with a generalized non-linear incidence,, Math. Biosci., 189 (2004), 75.  doi: doi:10.1016/j.mbs.2004.01.003.  Google Scholar

[2]

M. E. Alexander and S. M. Moghadas, Bifurcation analysis of an SIRS epidemic model with generalized incidence,, SIAM J. Appl. Math., 65 (2005), 1794.   Google Scholar

[3]

V. Capasso and G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model,, Math. Biosci., 42 (1978), 43.  doi: doi:10.1016/0025-5564(78)90006-8.  Google Scholar

[4]

W. R. Derrick and P. van den Driessche, Homoclinic orbits in a disease transmission model with nonlinear incidence and nonconstant population,, Discrete Contin. Dyn. Syst. Ser. B, 2 (2003), 299.  doi: doi:10.3934/dcdsb.2003.3.299.  Google Scholar

[5]

Z. Feng and H. R. Thieme, Recurrent outbreaks of childhood disease revisited: The impact of isolation,, Math. Biosci., 128 (1995), 93.  doi: doi:10.1016/0025-5564(94)00069-C.  Google Scholar

[6]

P. Glendinning, "Stability, Instability and Chaos,", Cambridge University Press, (1994).   Google Scholar

[7]

B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, "Theory and Applications of Hopf Bifurcation,", Lecture Notes Series, 41 (1981).   Google Scholar

[8]

H. W. Hethcote, The mathematics of infectious disease,, SIAM Rev., 42 (2000), 599.  doi: doi:10.1137/S0036144500371907.  Google Scholar

[9]

H. W. Hethcote and S. A. Levin, Periodicity in epidemiological models,, in, 18 (1986), 193.   Google Scholar

[10]

H. W. Hethcote and P. van den Driessche, Some epidemiological models with nonlinear incidence,, J. Math. Biol., 29 (1991), 271.  doi: doi:10.1007/BF00160539.  Google Scholar

[11]

Y. A. Kuznetsov, "Elements of Applied Bifurcation Theory,", 3rd edition, 112 (2004).   Google Scholar

[12]

G. Li and W. Wang, Bifurcation analysis of an epidemic model with nonlinear incidence,, Appl. Math. Comput., 214 (2009), 411.  doi: doi:10.1016/j.amc.2009.04.012.  Google Scholar

[13]

W. M. Liu, H. W. Hetchote and S. A. Levin, Dynamical behavior of epidemiological models with nonlinear incidence rates,, J. Math. Biol., 25 (1987), 359.  doi: doi:10.1007/BF00277162.  Google Scholar

[14]

W. M. Liu, S. A. Levin and Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models,, J. Math. Biol., 23 (1986), 187.  doi: doi:10.1007/BF00276956.  Google Scholar

[15]

M. Lizana and J. Rivero, Multiparametric bifurcations for a model in epidemiology,, J. Math. Biol., 35 (1996), 21.  doi: doi:10.1007/s002850050040.  Google Scholar

[16]

S. M. Moghadas, Analysis of an epidemic model with bistable equilibria using the Poincaré index,, Appl. Math. Comput., 149 (2004), 689.  doi: doi:10.1016/S0096-3003(03)00171-1.  Google Scholar

[17]

S. M. Moghadas and M. E. Alexander, Bifurcations of an epidemic model with non-linear incidence and infection-dependent removal rate,, Math. Med. Biol., 23 (2006), 231.  doi: doi:10.1093/imammb/dql011.  Google Scholar

[18]

S. Ruan and W. Wang, Dynamical behavior of an epidemic model with a nonlinear incidence rate,, J. Differential Equations, 188 (2003), 135.  doi: doi:10.1016/S0022-0396(02)00089-X.  Google Scholar

[19]

Y. Tang, D. Huang, S. Ruan and W. Zhang, Coexistence of limit cycles and homoclinic loops in a SIRS model with a nonlinear incidence rate,, SIAM J. Appl. Math., 69 (2008), 621.  doi: doi:10.1137/070700966.  Google Scholar

[20]

W. Wang, Epidemic models with nonlinear infection forces,, Math. Biosci. Eng., 3 (2006), 267.   Google Scholar

[21]

S. Wiggins, "Introduction to Applied Nonlinear Dynamical Systems and Chaos,", 2nd edition, (2004).   Google Scholar

[22]

D. Xiao and S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate,, Math. Biosci., 208 (2007), 419.  doi: doi:10.1016/j.mbs.2006.09.025.  Google Scholar

show all references

References:
[1]

M. E. Alexander and S. M. Moghadas, Periodicity in an epidemic model with a generalized non-linear incidence,, Math. Biosci., 189 (2004), 75.  doi: doi:10.1016/j.mbs.2004.01.003.  Google Scholar

[2]

M. E. Alexander and S. M. Moghadas, Bifurcation analysis of an SIRS epidemic model with generalized incidence,, SIAM J. Appl. Math., 65 (2005), 1794.   Google Scholar

[3]

V. Capasso and G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model,, Math. Biosci., 42 (1978), 43.  doi: doi:10.1016/0025-5564(78)90006-8.  Google Scholar

[4]

W. R. Derrick and P. van den Driessche, Homoclinic orbits in a disease transmission model with nonlinear incidence and nonconstant population,, Discrete Contin. Dyn. Syst. Ser. B, 2 (2003), 299.  doi: doi:10.3934/dcdsb.2003.3.299.  Google Scholar

[5]

Z. Feng and H. R. Thieme, Recurrent outbreaks of childhood disease revisited: The impact of isolation,, Math. Biosci., 128 (1995), 93.  doi: doi:10.1016/0025-5564(94)00069-C.  Google Scholar

[6]

P. Glendinning, "Stability, Instability and Chaos,", Cambridge University Press, (1994).   Google Scholar

[7]

B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, "Theory and Applications of Hopf Bifurcation,", Lecture Notes Series, 41 (1981).   Google Scholar

[8]

H. W. Hethcote, The mathematics of infectious disease,, SIAM Rev., 42 (2000), 599.  doi: doi:10.1137/S0036144500371907.  Google Scholar

[9]

H. W. Hethcote and S. A. Levin, Periodicity in epidemiological models,, in, 18 (1986), 193.   Google Scholar

[10]

H. W. Hethcote and P. van den Driessche, Some epidemiological models with nonlinear incidence,, J. Math. Biol., 29 (1991), 271.  doi: doi:10.1007/BF00160539.  Google Scholar

[11]

Y. A. Kuznetsov, "Elements of Applied Bifurcation Theory,", 3rd edition, 112 (2004).   Google Scholar

[12]

G. Li and W. Wang, Bifurcation analysis of an epidemic model with nonlinear incidence,, Appl. Math. Comput., 214 (2009), 411.  doi: doi:10.1016/j.amc.2009.04.012.  Google Scholar

[13]

W. M. Liu, H. W. Hetchote and S. A. Levin, Dynamical behavior of epidemiological models with nonlinear incidence rates,, J. Math. Biol., 25 (1987), 359.  doi: doi:10.1007/BF00277162.  Google Scholar

[14]

W. M. Liu, S. A. Levin and Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models,, J. Math. Biol., 23 (1986), 187.  doi: doi:10.1007/BF00276956.  Google Scholar

[15]

M. Lizana and J. Rivero, Multiparametric bifurcations for a model in epidemiology,, J. Math. Biol., 35 (1996), 21.  doi: doi:10.1007/s002850050040.  Google Scholar

[16]

S. M. Moghadas, Analysis of an epidemic model with bistable equilibria using the Poincaré index,, Appl. Math. Comput., 149 (2004), 689.  doi: doi:10.1016/S0096-3003(03)00171-1.  Google Scholar

[17]

S. M. Moghadas and M. E. Alexander, Bifurcations of an epidemic model with non-linear incidence and infection-dependent removal rate,, Math. Med. Biol., 23 (2006), 231.  doi: doi:10.1093/imammb/dql011.  Google Scholar

[18]

S. Ruan and W. Wang, Dynamical behavior of an epidemic model with a nonlinear incidence rate,, J. Differential Equations, 188 (2003), 135.  doi: doi:10.1016/S0022-0396(02)00089-X.  Google Scholar

[19]

Y. Tang, D. Huang, S. Ruan and W. Zhang, Coexistence of limit cycles and homoclinic loops in a SIRS model with a nonlinear incidence rate,, SIAM J. Appl. Math., 69 (2008), 621.  doi: doi:10.1137/070700966.  Google Scholar

[20]

W. Wang, Epidemic models with nonlinear infection forces,, Math. Biosci. Eng., 3 (2006), 267.   Google Scholar

[21]

S. Wiggins, "Introduction to Applied Nonlinear Dynamical Systems and Chaos,", 2nd edition, (2004).   Google Scholar

[22]

D. Xiao and S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate,, Math. Biosci., 208 (2007), 419.  doi: doi:10.1016/j.mbs.2006.09.025.  Google Scholar

[1]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[2]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[3]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[4]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[5]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[6]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[7]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[8]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275

[9]

Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304

[10]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[11]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[12]

Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332

[13]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[14]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[15]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[16]

Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117

[17]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[18]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[19]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[20]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (125)
  • HTML views (0)
  • Cited by (28)

Other articles
by authors

[Back to Top]