June  2011, 15(4): 957-969. doi: 10.3934/dcdsb.2011.15.957

Three-dimensional cerebrospinal fluid flow within the human central nervous system

1. 

Division of Energy and Sustainability, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom, United Kingdom, United Kingdom

2. 

Division of Human Development, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom

Received  April 2010 Published  March 2011

This work describes a three-dimensional (3D) numerical simulation of the flow field of the complete enclosed Central Nervous System (CNS) including the ventricular system, the spinal cord and spinal sub-arachnoid space (SAS). Previous works on the topic consider only parts of the complete system imposing artificial boundary conditions at internal cross sections. The computational domain was constructed from MRI data using Materialise Software Mimics. In this work pulsatile velocity inlets in the lateral ventricles, due to the cardiac cycle, were used to simulate the dynamic nature of the CSF, whilst pressure outlets were used to model the areas of CSF re-absorption. A porous medium formulation (Darcy flow) was considered in the SAS to account for the effect of the arachnoid trabeculae within these areas. The simulation was run using the commercial CFD code Fluent using the laminar solver and transient simulation. A maximum CSF velocity was found to be in the region 11.8 mm/s, with a peak pressure drop through the aqueduct of the order of 2.8 Pa corresponding to a calculated peak Reynolds number of 12. CSF pressure at the exits of Magendie and Luschke were found to vary over the cardiac cycle, with pressure at the exits of Luschke being higher than Magendie for large periods of the cycle. CSF was seen to enter the SAS as a laminar jet from the exits of Magendie and Luschke. By only considering the cardiac cycle a very slow CSF motion within the spinal SAS was observed with magnitudes significantly reduced after a depth of 50mm down the column from the exit of Magendie. This result suggests that pulsating wall motion in the region of the spinal cord, due to respiratory effects, needs to be considered in order to predict experimentally observed flow recirculation within the spinal sac. 287 words.
Citation: Leo Howden, Donald Giddings, Henry Power, Michael Vloeberghs. Three-dimensional cerebrospinal fluid flow within the human central nervous system. Discrete & Continuous Dynamical Systems - B, 2011, 15 (4) : 957-969. doi: 10.3934/dcdsb.2011.15.957
References:
[1]

E. E. Jacobson, D. F. Fletcher, M. K. Morgan, and I. H. Johnston, Fluid dynamics of the cerebral aqueduct,, Pediatr Neurosurg, 24 (1996), 229.  doi: doi:10.1159/000121044.  Google Scholar

[2]

E. E. Jacobson, D. F. Fletcher, M. K. Morgan and I. H. Johnston, Computer modelling of the cerebrospinal fluid flow dynamics of aqueduct stenosis,, Medical and Biological Engineering and Computing, 37 (): 59.  doi: doi:10.1007/BF02513267.  Google Scholar

[3]

L. Fin and R. Grebe, Three dimensional modelling of the cerebrospinal fluid dynamics and brain interactions in the aqueduct of Sylvius,, Computer Methods In Biomechanics and Biomedical Engineering, 6 (2003), 163.  doi: doi:10.1080/1025584031000097933.  Google Scholar

[4]

V. Kurtcuoglu, D. Poulikakosa and Y. Ventikos, Computational modelling of the mechanical behaviour of the cerebrospinal fluid system,, Journal of Biomechanical Engineering, 127 (2005), 264.  doi: doi:10.1115/1.1865191.  Google Scholar

[5]

V. Kurtcuoglu, M. Soellinger, P. Summers, K. Boomsma, D. Poulikakosa, P. Boesiger and Y. Ventikos, Computational investigation of subject-specific cerebrospinal fluid flow in the third ventricle and aqueduct of Sylvius,, J. Biomechanics, 40 (2007), 1235.  doi: doi:10.1016/j.jbiomech.2006.05.031.  Google Scholar

[6]

S. Cheng, E. Jacobson and L. E. Bilston, Models of the pulsatile hydrodynamics of cerebrospinal fluid flow in the normal and abnormal intracranial system,, Computer Methods in Biomechanics and Biomedical Engineering, 10 (2007), 151.  doi: doi:10.1080/10255840601124753.  Google Scholar

[7]

A. A. Linninger, C. Tsakiris, D. C. Zhu, M. Xenos, P. Roycewicz, Z. Danziger and R. Penn, Pulsatile cerebrospinal fluid dynamics in the human brain,, IEEE Transactions on Biomedical Engineering, 52 (2005), 557.  doi: doi:10.1109/TBME.2005.844021.  Google Scholar

[8]

A. A. Linninger, M. Xenos, D. C. Zhu, M. B. R. Somayaji, S. Kondapalli and R. D. Penn, Cerebrospinal fluid flow in the normal and hydrocephalic human brain,, IEEE Transactions on Biomedical Engineering, 54 (2007), 291.  doi: doi:10.1109/TBME.2006.886853.  Google Scholar

[9]

Leo Howden, "Numerical and Experimental Studies of CSF Fluid Motion and Drug Injections into the Central Nervous System,", Ph.D thesis, (2007).   Google Scholar

[10]

L. Howden, D. Giddings, H. Power, A. Aroussi, M. Vloeberghs, M. Garnett and D. A. Walker, Three dimensional cerebrospinal fluid flow within the human ventricular system,, Journal of Computer Methods in Biomechanics and Biomedical Engineering, 11 (2008), 123.  doi: doi:10.1080/10255840701492118.  Google Scholar

[11]

E. A. Bering Jnr, Choroid plexus and arterial pulsation of cerebrospinal fluid; demonstration of the choroid plexuses as a cerebrospinal fluid pump,, Arch Neurol Psychiatr, 73 (1955), 165.   Google Scholar

[12]

H. D. Portnoy and M. Chopp, Cerebrospinal fluid pulse wave form analysis during hypercapnia and hypoxia,, Neurosurgery, 9 (1981), 14.  doi: doi:10.1227/00006123-198107000-00004.  Google Scholar

[13]

E. E. Jacobson, D. F. Fletcher, M. K. Morgan and I. H. Johnston, Computer modelling of CSF flow in the subarachnoid space,, Journal of Clinical Neroscience, 6 (): 498.  doi: doi:10.1016/S0967-5868(99)90009-7.  Google Scholar

[14]

G. Schroth and U. Klose, Cerebrospinal fluid flow. II. Physiology of respiration-related pulsations,, Neuroradiology, 35 (1992), 10.  doi: doi:10.1007/BF00588271.  Google Scholar

[15]

F. Stahlberg, J. Mogelvang, C. Thomsen, B. Nordell, M. Stubgaard, A. Ericsson, G. Sperber, D. Greitz, H. Larsson and O. Henriksen, A method for MR quantification of flow velocities in blood and CSF using interleaved gradient-echo pulse sequences,, Magn. Reson. Imaging, 7 (1989), 655.  doi: doi:10.1016/0730-725X(89)90535-3.  Google Scholar

[16]

D. R. Enzmann and N. J. Pelc, Normal flow patterns of intracranial and spinal cerebrospinal fluid defined with phase contrast Cine MR imaging,, Radiology, 178 (1991), 467.   Google Scholar

[17]

D. Greitz, A. Franck and B. Nordell, On the pulsatile nature of intracranial and spinal CSF circulation demonstrated by MR imaging,, Acta Radialogica, 34 (1993), 321.   Google Scholar

[18]

O. Baledent, M. C. Henry-Feugeas and I. Idy-Peretti, Cerebrospinal fluid dynamics and relation with blood flow: A magnetic resonance study with semiautomated cerebrospinal fluid segmentation,, Invest Radiol., 37 (2001), 368.  doi: doi:10.1097/00004424-200107000-00003.  Google Scholar

[19]

R. K. Parkkola, M. E. Komu, T. M. Aarimaa, M. S. Alanen and C. Thomsen, Cerebrospinal fluid flow in children with normal and dilated ventricles studied by MR imaging,, Acta Radiologica, 42 (2001), 33.  doi: doi:10.1080/028418501127346431.  Google Scholar

show all references

References:
[1]

E. E. Jacobson, D. F. Fletcher, M. K. Morgan, and I. H. Johnston, Fluid dynamics of the cerebral aqueduct,, Pediatr Neurosurg, 24 (1996), 229.  doi: doi:10.1159/000121044.  Google Scholar

[2]

E. E. Jacobson, D. F. Fletcher, M. K. Morgan and I. H. Johnston, Computer modelling of the cerebrospinal fluid flow dynamics of aqueduct stenosis,, Medical and Biological Engineering and Computing, 37 (): 59.  doi: doi:10.1007/BF02513267.  Google Scholar

[3]

L. Fin and R. Grebe, Three dimensional modelling of the cerebrospinal fluid dynamics and brain interactions in the aqueduct of Sylvius,, Computer Methods In Biomechanics and Biomedical Engineering, 6 (2003), 163.  doi: doi:10.1080/1025584031000097933.  Google Scholar

[4]

V. Kurtcuoglu, D. Poulikakosa and Y. Ventikos, Computational modelling of the mechanical behaviour of the cerebrospinal fluid system,, Journal of Biomechanical Engineering, 127 (2005), 264.  doi: doi:10.1115/1.1865191.  Google Scholar

[5]

V. Kurtcuoglu, M. Soellinger, P. Summers, K. Boomsma, D. Poulikakosa, P. Boesiger and Y. Ventikos, Computational investigation of subject-specific cerebrospinal fluid flow in the third ventricle and aqueduct of Sylvius,, J. Biomechanics, 40 (2007), 1235.  doi: doi:10.1016/j.jbiomech.2006.05.031.  Google Scholar

[6]

S. Cheng, E. Jacobson and L. E. Bilston, Models of the pulsatile hydrodynamics of cerebrospinal fluid flow in the normal and abnormal intracranial system,, Computer Methods in Biomechanics and Biomedical Engineering, 10 (2007), 151.  doi: doi:10.1080/10255840601124753.  Google Scholar

[7]

A. A. Linninger, C. Tsakiris, D. C. Zhu, M. Xenos, P. Roycewicz, Z. Danziger and R. Penn, Pulsatile cerebrospinal fluid dynamics in the human brain,, IEEE Transactions on Biomedical Engineering, 52 (2005), 557.  doi: doi:10.1109/TBME.2005.844021.  Google Scholar

[8]

A. A. Linninger, M. Xenos, D. C. Zhu, M. B. R. Somayaji, S. Kondapalli and R. D. Penn, Cerebrospinal fluid flow in the normal and hydrocephalic human brain,, IEEE Transactions on Biomedical Engineering, 54 (2007), 291.  doi: doi:10.1109/TBME.2006.886853.  Google Scholar

[9]

Leo Howden, "Numerical and Experimental Studies of CSF Fluid Motion and Drug Injections into the Central Nervous System,", Ph.D thesis, (2007).   Google Scholar

[10]

L. Howden, D. Giddings, H. Power, A. Aroussi, M. Vloeberghs, M. Garnett and D. A. Walker, Three dimensional cerebrospinal fluid flow within the human ventricular system,, Journal of Computer Methods in Biomechanics and Biomedical Engineering, 11 (2008), 123.  doi: doi:10.1080/10255840701492118.  Google Scholar

[11]

E. A. Bering Jnr, Choroid plexus and arterial pulsation of cerebrospinal fluid; demonstration of the choroid plexuses as a cerebrospinal fluid pump,, Arch Neurol Psychiatr, 73 (1955), 165.   Google Scholar

[12]

H. D. Portnoy and M. Chopp, Cerebrospinal fluid pulse wave form analysis during hypercapnia and hypoxia,, Neurosurgery, 9 (1981), 14.  doi: doi:10.1227/00006123-198107000-00004.  Google Scholar

[13]

E. E. Jacobson, D. F. Fletcher, M. K. Morgan and I. H. Johnston, Computer modelling of CSF flow in the subarachnoid space,, Journal of Clinical Neroscience, 6 (): 498.  doi: doi:10.1016/S0967-5868(99)90009-7.  Google Scholar

[14]

G. Schroth and U. Klose, Cerebrospinal fluid flow. II. Physiology of respiration-related pulsations,, Neuroradiology, 35 (1992), 10.  doi: doi:10.1007/BF00588271.  Google Scholar

[15]

F. Stahlberg, J. Mogelvang, C. Thomsen, B. Nordell, M. Stubgaard, A. Ericsson, G. Sperber, D. Greitz, H. Larsson and O. Henriksen, A method for MR quantification of flow velocities in blood and CSF using interleaved gradient-echo pulse sequences,, Magn. Reson. Imaging, 7 (1989), 655.  doi: doi:10.1016/0730-725X(89)90535-3.  Google Scholar

[16]

D. R. Enzmann and N. J. Pelc, Normal flow patterns of intracranial and spinal cerebrospinal fluid defined with phase contrast Cine MR imaging,, Radiology, 178 (1991), 467.   Google Scholar

[17]

D. Greitz, A. Franck and B. Nordell, On the pulsatile nature of intracranial and spinal CSF circulation demonstrated by MR imaging,, Acta Radialogica, 34 (1993), 321.   Google Scholar

[18]

O. Baledent, M. C. Henry-Feugeas and I. Idy-Peretti, Cerebrospinal fluid dynamics and relation with blood flow: A magnetic resonance study with semiautomated cerebrospinal fluid segmentation,, Invest Radiol., 37 (2001), 368.  doi: doi:10.1097/00004424-200107000-00003.  Google Scholar

[19]

R. K. Parkkola, M. E. Komu, T. M. Aarimaa, M. S. Alanen and C. Thomsen, Cerebrospinal fluid flow in children with normal and dilated ventricles studied by MR imaging,, Acta Radiologica, 42 (2001), 33.  doi: doi:10.1080/028418501127346431.  Google Scholar

[1]

Laura Cattaneo, Paolo Zunino. Computational models for fluid exchange between microcirculation and tissue interstitium. Networks & Heterogeneous Media, 2014, 9 (1) : 135-159. doi: 10.3934/nhm.2014.9.135

[2]

Alain Miranville, Mazen Saad, Raafat Talhouk. Preface: Workshop in fluid mechanics and population dynamics. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : i-i. doi: 10.3934/dcdss.2014.7.2i

[3]

A. V. Borisov, I.S. Mamaev, S. M. Ramodanov. Dynamics of two interacting circular cylinders in perfect fluid. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 235-253. doi: 10.3934/dcds.2007.19.235

[4]

Jeffrey J. Early, Juha Pohjanpelto, Roger M. Samelson. Group foliation of equations in geophysical fluid dynamics. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1571-1586. doi: 10.3934/dcds.2010.27.1571

[5]

Martina Bukač, Sunčica Čanić. Longitudinal displacement in viscoelastic arteries: A novel fluid-structure interaction computational model, and experimental validation. Mathematical Biosciences & Engineering, 2013, 10 (2) : 295-318. doi: 10.3934/mbe.2013.10.295

[6]

Chun-Hao Teng, I-Liang Chern, Ming-Chih Lai. Simulating binary fluid-surfactant dynamics by a phase field model. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1289-1307. doi: 10.3934/dcdsb.2012.17.1289

[7]

Nguyen Thieu Huy, Vu Thi Ngoc Ha, Pham Truong Xuan. Boundedness and stability of solutions to semi-linear equations and applications to fluid dynamics. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2103-2116. doi: 10.3934/cpaa.2016029

[8]

Victor Zvyagin, Vladimir Orlov. On one problem of viscoelastic fluid dynamics with memory on an infinite time interval. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3855-3877. doi: 10.3934/dcdsb.2018114

[9]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[10]

Cheng-Zhong Xu, Gauthier Sallet. Multivariable boundary PI control and regulation of a fluid flow system. Mathematical Control & Related Fields, 2014, 4 (4) : 501-520. doi: 10.3934/mcrf.2014.4.501

[11]

Lingbing He. On the global smooth solution to 2-D fluid/particle system. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 237-263. doi: 10.3934/dcds.2010.27.237

[12]

Jean-Jérôme Casanova. Existence of time-periodic strong solutions to a fluid–structure system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3291-3313. doi: 10.3934/dcds.2019136

[13]

Boris Andreianov, Frédéric Lagoutière, Nicolas Seguin, Takéo Takahashi. Small solids in an inviscid fluid. Networks & Heterogeneous Media, 2010, 5 (3) : 385-404. doi: 10.3934/nhm.2010.5.385

[14]

R. H.W. Hoppe, William G. Litvinov. Problems on electrorheological fluid flows. Communications on Pure & Applied Analysis, 2004, 3 (4) : 809-848. doi: 10.3934/cpaa.2004.3.809

[15]

Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part II: The nonlinear system.. Evolution Equations & Control Theory, 2014, 3 (1) : 83-118. doi: 10.3934/eect.2014.3.83

[16]

Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part I: The linearized system.. Evolution Equations & Control Theory, 2014, 3 (1) : 59-82. doi: 10.3934/eect.2014.3.59

[17]

Jin Li, Jianhua Huang. Dynamics of a 2D Stochastic non-Newtonian fluid driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2483-2508. doi: 10.3934/dcdsb.2012.17.2483

[18]

Luis A. Caffarelli, Alexis F. Vasseur. The De Giorgi method for regularity of solutions of elliptic equations and its applications to fluid dynamics. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 409-427. doi: 10.3934/dcdss.2010.3.409

[19]

Rachel Clipp, Brooke Steele. An evaluation of dynamic outlet boundary conditions in a 1D fluid dynamics model. Mathematical Biosciences & Engineering, 2012, 9 (1) : 61-74. doi: 10.3934/mbe.2012.9.61

[20]

Linghai Zhang. Decay estimates with sharp rates of global solutions of nonlinear systems of fluid dynamics equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2181-2200. doi: 10.3934/dcdss.2016091

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (5)

[Back to Top]