June  2011, 15(4): 971-990. doi: 10.3934/dcdsb.2011.15.971

Perturbation solution of the coupled Stokes-Darcy problem

1. 

Laboratoire d'Ingénierie Mathématique, Ecole Polytechnique de Tunisie, Université de Carthage, B.P. 743 - 2078 La Marsa, Tunisia, Tunisia

2. 

LIMSI, UPR 3251 CNRS, BP 133, Bât. 508,91403 Orsay cedex, France

Received  May 2010 Revised  June 2010 Published  March 2011

Microfiltration of particles is modelled by the motion of particles embedded in a Stokes flow near a porous membrane in which Darcy equations apply. Stokes flow also applies on the other side of the membrane. A pressure gradient is applied across the membrane. Beavers and Joseph slip boundary condition applies along the membrane surfaces. This coupled Stokes-Darcy problem is solved by a perturbation method, considering that the particle size is much larger than the pores of the membrane. The formal asymptotic solution is developed in detail up to 3rd order. The method is applied to the example case of a spherical particle moving normal to a membrane. The solution, limited here to an impermeable slip surface (described from 3rd order expansion), uses as an intermediate step the boundary integral technique for Stokes flow near an impermeable surface with a no-slip boundary condition. Results of the perturbation solution are in good agreement with O'Neill and Bhatt analytical solution for this case.
Citation: Sondes khabthani, Lassaad Elasmi, François Feuillebois. Perturbation solution of the coupled Stokes-Darcy problem. Discrete & Continuous Dynamical Systems - B, 2011, 15 (4) : 971-990. doi: 10.3934/dcdsb.2011.15.971
References:
[1]

G. Beavers and D. Joseph, Boundary conditions at a naturally permeable wall,, J. Fluid Mech., 30 (1967), 197.  doi: doi:10.1017/S0022112067001375.  Google Scholar

[2]

G. S. Beavers, E. M. Sparrow and B. A. Masha, Boundary condition at a porous surface which bounds a fluid flow,, AIChE. J., 20 (1974), 596.  doi: doi:10.1002/aic.690200323.  Google Scholar

[3]

J. R. Blake, A note on the image system for a Stokeslet in a no-slip boundary,, Proc. Cambridge Philos. Soc., 70 (1971), 303.  doi: doi:10.1017/S0305004100049902.  Google Scholar

[4]

M. Bonnet, "Boundary Integral Equation Methods for Solids and Fluids,", John Willey and Sons LTD, (1995).   Google Scholar

[5]

L. Elasmi, Singularity method for Stokes flow with slip boundary condition,, IMA Journal of Applied Math., 73 (2008), 724.  doi: doi:10.1093/imamat/hxn021.  Google Scholar

[6]

L. Elasmi and F. Feuillebois, Integral equation method for creeping flow around a solid body near a porous slab,, Q. J. Mech. Appl. Math., 56 (2003), 163.  doi: doi:10.1093/qjmam/56.2.163.  Google Scholar

[7]

B. Goyeau, D. Lhuillier, D. Gobin and M. G. Velarde, Momentum transport at a fluid-porous interface,, Int. J. Heat Mass Transfer, 46 (2003), 4071.  doi: doi:10.1016/S0017-9310(03)00241-2.  Google Scholar

[8]

J. Happel and H. Brenner, "Low Reynolds Number Hydrodynamics,", Kluwer Academic Publishers, (1991).   Google Scholar

[9]

W. Jäger and A. Mikelić, On the interface boundary condition of Beavers, Joseph and Saffman,, SIAM J. Appl. Maths, 60 (2000), 1111.  doi: doi:10.1137/S003613999833678X.  Google Scholar

[10]

C. Kunert and J. Harting, Roughness induced boundary slip in microchannel flows,, Phys. Rev. Letters, 99 (2007), 1.  doi: doi:10.1103/PhysRevLett.99.176001.  Google Scholar

[11]

N. Lecoq, R. Anthore, B. Cichocki, P. Szymczak and F. Feuillebois, Drag force on a sphere moving towards a corrugated wall,, J. Fluid Mech., 513 (2004), 247.  doi: doi:10.1017/S0022112004009942.  Google Scholar

[12]

A. Niavarani and N. Priezjev, The effective slip length and vortex formation in laminar flow over a rough surface,, Phys. Fluids, 21 (2009), 1.  doi: doi:10.1063/1.3121305.  Google Scholar

[13]

M. E. O'Neill and B. S. Bhatt, Slow motion of a solid sphere in the presence of a naturally permeable surface,, Q. J. Mech. Appl. Math., 44 (1991), 91.  doi: doi:10.1093/qjmam/44.1.91.  Google Scholar

[14]

H. Power and L. C. Wrobel, "Boundary Integral Methods in Fluid Mechanics,", Computational Mechanics Publications, (1995).   Google Scholar

[15]

C. Pozrikidis, "Boundary Integral and Singularity Methods for Linearized Viscous Flow,", Cambridge University Press, (1992).   Google Scholar

[16]

C. Pozrikidis, "A Practical Guide to Boundary Element Methods with the Software Library Bemlib,", CRC Press, (2002).  doi: doi:10.1201/9781420035254.  Google Scholar

[17]

P. G. Saffman, On the boundary condition at the surface of a porous medium,, Stud. Appl. Math., 50 (1971), 93.   Google Scholar

[18]

M. Sahraoui and M. Kaviany, Slip and no-slip velocity boundary conditions at interface of porous, plain media,, Int. J. Heat Mass Transfer, 35 (1992), 927.  doi: doi:10.1016/0017-9310(92)90258-T.  Google Scholar

[19]

P. Schmitz, D. Houi and B. Wandelt, Hydrodynamic aspects of crossflow microfiltration. Analysis of particle deposition at the membrane surface,, J. Membrane Sci., 71 (1992), 29.  doi: doi:10.1016/0376-7388(92)85003-2.  Google Scholar

[20]

A. Sellier, Settling motion of interacting solid particles in the vicinity of a plane solid boundary,, Compte-Rendus Acad. Sci., 333 (2005), 413.   Google Scholar

[21]

O. I. Vinogradova and G. E. Yakubov, Surface roughness and hydrodynamic boundary conditions,, Phys. Rev. E., 73 (2006), 1.  doi: doi:10.1103/PhysRevE.73.045302.  Google Scholar

show all references

References:
[1]

G. Beavers and D. Joseph, Boundary conditions at a naturally permeable wall,, J. Fluid Mech., 30 (1967), 197.  doi: doi:10.1017/S0022112067001375.  Google Scholar

[2]

G. S. Beavers, E. M. Sparrow and B. A. Masha, Boundary condition at a porous surface which bounds a fluid flow,, AIChE. J., 20 (1974), 596.  doi: doi:10.1002/aic.690200323.  Google Scholar

[3]

J. R. Blake, A note on the image system for a Stokeslet in a no-slip boundary,, Proc. Cambridge Philos. Soc., 70 (1971), 303.  doi: doi:10.1017/S0305004100049902.  Google Scholar

[4]

M. Bonnet, "Boundary Integral Equation Methods for Solids and Fluids,", John Willey and Sons LTD, (1995).   Google Scholar

[5]

L. Elasmi, Singularity method for Stokes flow with slip boundary condition,, IMA Journal of Applied Math., 73 (2008), 724.  doi: doi:10.1093/imamat/hxn021.  Google Scholar

[6]

L. Elasmi and F. Feuillebois, Integral equation method for creeping flow around a solid body near a porous slab,, Q. J. Mech. Appl. Math., 56 (2003), 163.  doi: doi:10.1093/qjmam/56.2.163.  Google Scholar

[7]

B. Goyeau, D. Lhuillier, D. Gobin and M. G. Velarde, Momentum transport at a fluid-porous interface,, Int. J. Heat Mass Transfer, 46 (2003), 4071.  doi: doi:10.1016/S0017-9310(03)00241-2.  Google Scholar

[8]

J. Happel and H. Brenner, "Low Reynolds Number Hydrodynamics,", Kluwer Academic Publishers, (1991).   Google Scholar

[9]

W. Jäger and A. Mikelić, On the interface boundary condition of Beavers, Joseph and Saffman,, SIAM J. Appl. Maths, 60 (2000), 1111.  doi: doi:10.1137/S003613999833678X.  Google Scholar

[10]

C. Kunert and J. Harting, Roughness induced boundary slip in microchannel flows,, Phys. Rev. Letters, 99 (2007), 1.  doi: doi:10.1103/PhysRevLett.99.176001.  Google Scholar

[11]

N. Lecoq, R. Anthore, B. Cichocki, P. Szymczak and F. Feuillebois, Drag force on a sphere moving towards a corrugated wall,, J. Fluid Mech., 513 (2004), 247.  doi: doi:10.1017/S0022112004009942.  Google Scholar

[12]

A. Niavarani and N. Priezjev, The effective slip length and vortex formation in laminar flow over a rough surface,, Phys. Fluids, 21 (2009), 1.  doi: doi:10.1063/1.3121305.  Google Scholar

[13]

M. E. O'Neill and B. S. Bhatt, Slow motion of a solid sphere in the presence of a naturally permeable surface,, Q. J. Mech. Appl. Math., 44 (1991), 91.  doi: doi:10.1093/qjmam/44.1.91.  Google Scholar

[14]

H. Power and L. C. Wrobel, "Boundary Integral Methods in Fluid Mechanics,", Computational Mechanics Publications, (1995).   Google Scholar

[15]

C. Pozrikidis, "Boundary Integral and Singularity Methods for Linearized Viscous Flow,", Cambridge University Press, (1992).   Google Scholar

[16]

C. Pozrikidis, "A Practical Guide to Boundary Element Methods with the Software Library Bemlib,", CRC Press, (2002).  doi: doi:10.1201/9781420035254.  Google Scholar

[17]

P. G. Saffman, On the boundary condition at the surface of a porous medium,, Stud. Appl. Math., 50 (1971), 93.   Google Scholar

[18]

M. Sahraoui and M. Kaviany, Slip and no-slip velocity boundary conditions at interface of porous, plain media,, Int. J. Heat Mass Transfer, 35 (1992), 927.  doi: doi:10.1016/0017-9310(92)90258-T.  Google Scholar

[19]

P. Schmitz, D. Houi and B. Wandelt, Hydrodynamic aspects of crossflow microfiltration. Analysis of particle deposition at the membrane surface,, J. Membrane Sci., 71 (1992), 29.  doi: doi:10.1016/0376-7388(92)85003-2.  Google Scholar

[20]

A. Sellier, Settling motion of interacting solid particles in the vicinity of a plane solid boundary,, Compte-Rendus Acad. Sci., 333 (2005), 413.   Google Scholar

[21]

O. I. Vinogradova and G. E. Yakubov, Surface roughness and hydrodynamic boundary conditions,, Phys. Rev. E., 73 (2006), 1.  doi: doi:10.1103/PhysRevE.73.045302.  Google Scholar

[1]

Chiu-Ya Lan, Huey-Er Lin, Shih-Hsien Yu. The Green's functions for the Broadwell Model in a half space problem. Networks & Heterogeneous Media, 2006, 1 (1) : 167-183. doi: 10.3934/nhm.2006.1.167

[2]

Hongjie Dong, Seick Kim. Green's functions for parabolic systems of second order in time-varying domains. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1407-1433. doi: 10.3934/cpaa.2014.13.1407

[3]

Mourad Choulli. Local boundedness property for parabolic BVP's and the Gaussian upper bound for their Green functions. Evolution Equations & Control Theory, 2015, 4 (1) : 61-67. doi: 10.3934/eect.2015.4.61

[4]

Wen-ming He, Jun-zhi Cui. The estimate of the multi-scale homogenization method for Green's function on Sobolev space $W^{1,q}(\Omega)$. Communications on Pure & Applied Analysis, 2012, 11 (2) : 501-516. doi: 10.3934/cpaa.2012.11.501

[5]

Joyce R. McLaughlin and Arturo Portnoy. Perturbation expansions for eigenvalues and eigenvectors for a rectangular membrane subject to a restorative force. Electronic Research Announcements, 1997, 3: 72-77.

[6]

Ken Abe. Some uniqueness result of the Stokes flow in a half space in a space of bounded functions. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 887-900. doi: 10.3934/dcdss.2014.7.887

[7]

Edoardo Mainini. On the signed porous medium flow. Networks & Heterogeneous Media, 2012, 7 (3) : 525-541. doi: 10.3934/nhm.2012.7.525

[8]

Anita T. Layton, J. Thomas Beale. A partially implicit hybrid method for computing interface motion in Stokes flow. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1139-1153. doi: 10.3934/dcdsb.2012.17.1139

[9]

Jongkeun Choi, Ki-Ahm Lee. The Green function for the Stokes system with measurable coefficients. Communications on Pure & Applied Analysis, 2017, 16 (6) : 1989-2022. doi: 10.3934/cpaa.2017098

[10]

Peter Bella, Arianna Giunti. Green's function for elliptic systems: Moment bounds. Networks & Heterogeneous Media, 2018, 13 (1) : 155-176. doi: 10.3934/nhm.2018007

[11]

Virginia Agostiniani, Rolando Magnanini. Symmetries in an overdetermined problem for the Green's function. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 791-800. doi: 10.3934/dcdss.2011.4.791

[12]

Sungwon Cho. Alternative proof for the existence of Green's function. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1307-1314. doi: 10.3934/cpaa.2011.10.1307

[13]

Michiel Bertsch, Carlo Nitsch. Groundwater flow in a fissurised porous stratum. Networks & Heterogeneous Media, 2010, 5 (4) : 765-782. doi: 10.3934/nhm.2010.5.765

[14]

Kohei Ueno. Weighted Green functions of nondegenerate polynomial skew products on $\mathbb{C}^2$. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 985-996. doi: 10.3934/dcds.2011.31.985

[15]

Kohei Ueno. Weighted Green functions of polynomial skew products on $\mathbb{C}^2$. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2283-2305. doi: 10.3934/dcds.2014.34.2283

[16]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[17]

Cedric Galusinski, Mazen Saad. Water-gas flow in porous media. Conference Publications, 2005, 2005 (Special) : 307-316. doi: 10.3934/proc.2005.2005.307

[18]

Amina Mecherbet. Sedimentation of particles in Stokes flow. Kinetic & Related Models, 2019, 12 (5) : 995-1044. doi: 10.3934/krm.2019038

[19]

S. S. Dragomir, C. E. M. Pearce. Jensen's inequality for quasiconvex functions. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 279-291. doi: 10.3934/naco.2012.2.279

[20]

Jeremiah Birrell. A posteriori error bounds for two point boundary value problems: A green's function approach. Journal of Computational Dynamics, 2015, 2 (2) : 143-164. doi: 10.3934/jcd.2015001

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (3)

[Back to Top]