# American Institute of Mathematical Sciences

October  2011, 16(3): 1003-1037. doi: 10.3934/dcdsb.2011.16.1003

## Influence of neurobiological mechanisms on speeds of traveling wave fronts in mathematical neuroscience

 1 Department of Mathematics, Lehigh University, 14 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States, United States, United States

Received  August 2010 Revised  October 2010 Published  June 2011

We study speeds of traveling wave fronts of the following integral differential equation

$\frac{\partial u}{\partial t}+f(u)\hspace{6cm}$

$=(\alpha-au)\int^{\infty}_0\xi(c)[\int_R K(x-y) H(u(y,t-\frac{1}{c}|x-y|)-\theta)dy]dc$

$+(\beta-bu)\int^{\infty}_0\eta(\tau)[\int_RW(x-y) H(u(y,t-\tau)-\Theta)dy]d\tau.$

This model equation is motivated by previous models which arise from synaptically coupled neuronal networks. In this equation, $f(u)$ is a smooth function of $u$, usually representing sodium current in the neuronal networks. Typical examples include $f(u)=u$ and $f(u)=u(u-1)(Du-1)$, where $D>1$ is a constant. The transmission speed distribution $\xi$ and the feedback delay distribution $\eta$ are probability density functions. The kernel functions $K$ and $W$ represent synaptic couplings between neurons in the neuronal networks. The function $H$ stands for the Heaviside step function: $H(u-\theta)=0$ for all $u<\theta$, $H(0)=\frac{1}{2}$ and $H(u-\theta)=1$ for all $u>\theta$. Here $H$ represents the gain function. The parameters $a \geq 0$, $b \geq 0$, $\alpha \geq 0$, $\beta \geq 0$, $\theta > 0$ and $\Theta > 0$ represent biological mechanisms in the neuronal networks.
We will use mathematical analysis to investigate the influence of neurobiological mechanisms on the speeds of the traveling wave fronts. We will derive new estimates for the wave speeds. These results are quite different from the results obtained before, complementing the estimates obtained in many previous papers [11], [14], [15], and [16].
We will also use MATLAB to perform numerical simulations to investigate how the neurobiological mechanisms $a$, $b$, $\alpha$, $\beta$, $\theta$ and $\Theta$ influence the wave speeds.

Citation: Linghai Zhang, Ping-Shi Wu, Melissa Anne Stoner. Influence of neurobiological mechanisms on speeds of traveling wave fronts in mathematical neuroscience. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 1003-1037. doi: 10.3934/dcdsb.2011.16.1003
##### References:

show all references

##### References:
 [1] Changbing Hu, Yang Kuang, Bingtuan Li, Hao Liu. Spreading speeds and traveling wave solutions in cooperative integral-differential systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1663-1684. doi: 10.3934/dcdsb.2015.20.1663 [2] Linghai Zhang. Wave speed analysis of traveling wave fronts in delayed synaptically coupled neuronal networks. Discrete & Continuous Dynamical Systems, 2014, 34 (5) : 2405-2450. doi: 10.3934/dcds.2014.34.2405 [3] Fathi Dkhil, Angela Stevens. Traveling wave speeds in rapidly oscillating media. Discrete & Continuous Dynamical Systems, 2009, 25 (1) : 89-108. doi: 10.3934/dcds.2009.25.89 [4] Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047 [5] Guangying Lv, Mingxin Wang. Existence, uniqueness and stability of traveling wave fronts of discrete quasi-linear equations with delay. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 415-433. doi: 10.3934/dcdsb.2010.13.415 [6] E. S. Van Vleck, Aijun Zhang. Competing interactions and traveling wave solutions in lattice differential equations. Communications on Pure & Applied Analysis, 2016, 15 (2) : 457-475. doi: 10.3934/cpaa.2016.15.457 [7] M. B. A. Mansour. Computation of traveling wave fronts for a nonlinear diffusion-advection model. Mathematical Biosciences & Engineering, 2009, 6 (1) : 83-91. doi: 10.3934/mbe.2009.6.83 [8] Zengji Du, Shuling Yan, Kaige Zhuang. Traveling wave fronts in a diffusive and competitive Lotka-Volterra system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (9) : 3097-3111. doi: 10.3934/dcdss.2021010 [9] Dongbing Zha, Yi Zhou. The lifespan for quasilinear wave equations with multiple propagation speeds in four space dimensions. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1167-1186. doi: 10.3934/cpaa.2014.13.1167 [10] Bingtuan Li, William F. Fagan, Garrett Otto, Chunwei Wang. Spreading speeds and traveling wave solutions in a competitive reaction-diffusion model for species persistence in a stream. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3267-3281. doi: 10.3934/dcdsb.2014.19.3267 [11] Jiamin Cao, Peixuan Weng. Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1405-1426. doi: 10.3934/cpaa.2017067 [12] Zhi-Xian Yu, Rong Yuan. Traveling wave fronts in reaction-diffusion systems with spatio-temporal delay and applications. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 709-728. doi: 10.3934/dcdsb.2010.13.709 [13] Kun Li, Jianhua Huang, Xiong Li. Asymptotic behavior and uniqueness of traveling wave fronts in a delayed nonlocal dispersal competitive system. Communications on Pure & Applied Analysis, 2017, 16 (1) : 131-150. doi: 10.3934/cpaa.2017006 [14] Cui-Ping Cheng, Ruo-Fan An. Global stability of traveling wave fronts in a two-dimensional lattice dynamical system with global interaction. Electronic Research Archive, 2021, 29 (5) : 3535-3550. doi: 10.3934/era.2021051 [15] Liang Zhang, Bingtuan Li. Traveling wave solutions in an integro-differential competition model. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 417-428. doi: 10.3934/dcdsb.2012.17.417 [16] Feng Cao, Wenxian Shen. Spreading speeds and transition fronts of lattice KPP equations in time heterogeneous media. Discrete & Continuous Dynamical Systems, 2017, 37 (9) : 4697-4727. doi: 10.3934/dcds.2017202 [17] Charles L. Epstein, Leslie Greengard, Thomas Hagstrom. On the stability of time-domain integral equations for acoustic wave propagation. Discrete & Continuous Dynamical Systems, 2016, 36 (8) : 4367-4382. doi: 10.3934/dcds.2016.36.4367 [18] Lijun Zhang, Yixia Shi, Maoan Han. Smooth and singular traveling wave solutions for the Serre-Green-Naghdi equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (10) : 2917-2926. doi: 10.3934/dcdss.2020217 [19] Hongqiu Chen, Jerry L. Bona. Periodic traveling--wave solutions of nonlinear dispersive evolution equations. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 4841-4873. doi: 10.3934/dcds.2013.33.4841 [20] Lianzhang Bao, Zhengfang Zhou. Traveling wave in backward and forward parabolic equations from population dynamics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1507-1522. doi: 10.3934/dcdsb.2014.19.1507

2020 Impact Factor: 1.327