
Previous Article
Synchronization of chaotic systems with timevarying coupling delays
 DCDSB Home
 This Issue

Next Article
Dimension reduction and Mutual Fund Theorem in maximin setting for bond market
Feature extraction of the patterned textile with deformations via optimal control theory
1.  College of Mathematics and Computer Science, Chongqing Normal University, Chongqing, China 
2.  Department of Applied Mathematics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 
3.  Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 
References:
[1] 
A. Bodnarova, M. Bennamoun and K. K. Kubik, Suitability analysis of techniques for flaw detection in textiles using texture analysis, Pattern Analysis and Applications, 3 (2000), 254266. doi: 10.1007/s100440070010. 
[2] 
A. Bodnarova, M. Bennamoun and S. Latham, Optimal Gabor filters for textile flaw detection, Pattern Recognition, 35 (2002), 29732991. doi: 10.1016/S00313203(02)000171. 
[3] 
D. Chetverikov and A. Hanbury, Finding defects in texture using regularity and local orientation, Pattern Recognition, 35 (2002), 21652180. doi: 10.1016/S00313203(01)001881. 
[4] 
C. H. Chan and G. Pang, Fabric defect detection by Fourier analysis, IEEE Trans. Ind. Application, 36 (2000), 12671276. doi: 10.1109/28.871274. 
[5] 
Z. G. Feng and K. L. Teo, Optimal feedback control for stochastic impulsive linear systems subject to Poisson processes, in "Optimization and Optimal Control," Springer Optimization and Its Applications, 39, Springer, New York, (2010), 241258. 
[6] 
Z. G. Feng, K. L. Teo and V. Rehbock, Hybrid method for a general optimal sensor scheduling problem in discrete time, Automatica J. IFAC, 44 (2008), 12951303. doi: 10.1016/j.automatica.2007.09.024. 
[7] 
W. G. Litvinov, Optimal control of electrorheological clutch described by nonlinear parabolic equation with nonlocal boundary conditions, Journal of Industrial and Management Optimization, 7 (2011), 291315. 
[8] 
S. V. Lomov, G. Huysmans, Y. Luo, R. S. Parnas, A. Prodromou, I. Verpoest and F. R. Phelan, Textile composites: Modelling strategies, Composites Part A: Applied Science and Manufacturing, 32 (2001), 13791394. doi: 10.1016/S1359835X(01)000380. 
[9] 
R. Li, K. L. Teo, K. H. Wong and G. R. Duan, Control parameterization enhancing transform for optimal control of switched systems, Mathematical and Computer Modelling, 43 (2006), 13931403. doi: 10.1016/j.mcm.2005.08.012. 
[10] 
K. L. Mak, P. Peng and K. F. C. Yiu, Fabric defect detection using morphological filters, Image and Vision Computing, 27 (2009), 15851592. doi: 10.1016/j.imavis.2009.03.007. 
[11] 
K. L. Mak and P. Peng, An automated inspection system for textile fabrics based on Gabor filters, Robotics and ComputerIntegrated Manufacturing, 24 (2008), 359369. doi: 10.1016/j.rcim.2007.02.019. 
[12] 
M. J. D. Powell, A fast algorithm for nonlinearly constrained optimization calculations, in "Numerical Analysis" (ed. G. A. Watson) (Proc. 7^{th} Biennial Conf., Univ. Dundee, Dundee, 1977), Lecture Notes in Mathematics, 630, Springer, Berlin, (1978), 144157. 
[13] 
Pablo RodriguezRamirez and Michael Basin, An optimal impulsive control regulator for linear systems, Numerical Algebra, Control and Optimization, 1 (2011), 275282. 
[14] 
M. Tarfaoui and S. Akesbi, A finite element model of mechanical properties of plain weave, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 187188 (2001), 439448. doi: 10.1016/S09277757(01)006112. 
[15] 
K. L. Teo, C. J. Goh and K. H. Wong, "A Unified Computational Approach to Optimal Control Problems," Pitman Monographs and Surveys in Pure and Applied Mathematics, 55, Longman Scientific & Technical, Harlow, copublished in the United States with John Wiley & Sons, Inc., New York, 1991. 
[16] 
K. F. C. Yiu, K. L. Mak and K. L. Teo, Airfoil design via optimal control theory, Journal of Industrial and Management Optimization, 1 (2005), 133148. doi: 10.3934/jimo.2005.1.133. 
[17] 
D. J. Yao, H. L. Yang and R. M. Wang, Optimal financing and dividend strategies in a dual model with proportional costs, Journal of Industrial and Management Optimization, 6 (2010), 761777. 
show all references
References:
[1] 
A. Bodnarova, M. Bennamoun and K. K. Kubik, Suitability analysis of techniques for flaw detection in textiles using texture analysis, Pattern Analysis and Applications, 3 (2000), 254266. doi: 10.1007/s100440070010. 
[2] 
A. Bodnarova, M. Bennamoun and S. Latham, Optimal Gabor filters for textile flaw detection, Pattern Recognition, 35 (2002), 29732991. doi: 10.1016/S00313203(02)000171. 
[3] 
D. Chetverikov and A. Hanbury, Finding defects in texture using regularity and local orientation, Pattern Recognition, 35 (2002), 21652180. doi: 10.1016/S00313203(01)001881. 
[4] 
C. H. Chan and G. Pang, Fabric defect detection by Fourier analysis, IEEE Trans. Ind. Application, 36 (2000), 12671276. doi: 10.1109/28.871274. 
[5] 
Z. G. Feng and K. L. Teo, Optimal feedback control for stochastic impulsive linear systems subject to Poisson processes, in "Optimization and Optimal Control," Springer Optimization and Its Applications, 39, Springer, New York, (2010), 241258. 
[6] 
Z. G. Feng, K. L. Teo and V. Rehbock, Hybrid method for a general optimal sensor scheduling problem in discrete time, Automatica J. IFAC, 44 (2008), 12951303. doi: 10.1016/j.automatica.2007.09.024. 
[7] 
W. G. Litvinov, Optimal control of electrorheological clutch described by nonlinear parabolic equation with nonlocal boundary conditions, Journal of Industrial and Management Optimization, 7 (2011), 291315. 
[8] 
S. V. Lomov, G. Huysmans, Y. Luo, R. S. Parnas, A. Prodromou, I. Verpoest and F. R. Phelan, Textile composites: Modelling strategies, Composites Part A: Applied Science and Manufacturing, 32 (2001), 13791394. doi: 10.1016/S1359835X(01)000380. 
[9] 
R. Li, K. L. Teo, K. H. Wong and G. R. Duan, Control parameterization enhancing transform for optimal control of switched systems, Mathematical and Computer Modelling, 43 (2006), 13931403. doi: 10.1016/j.mcm.2005.08.012. 
[10] 
K. L. Mak, P. Peng and K. F. C. Yiu, Fabric defect detection using morphological filters, Image and Vision Computing, 27 (2009), 15851592. doi: 10.1016/j.imavis.2009.03.007. 
[11] 
K. L. Mak and P. Peng, An automated inspection system for textile fabrics based on Gabor filters, Robotics and ComputerIntegrated Manufacturing, 24 (2008), 359369. doi: 10.1016/j.rcim.2007.02.019. 
[12] 
M. J. D. Powell, A fast algorithm for nonlinearly constrained optimization calculations, in "Numerical Analysis" (ed. G. A. Watson) (Proc. 7^{th} Biennial Conf., Univ. Dundee, Dundee, 1977), Lecture Notes in Mathematics, 630, Springer, Berlin, (1978), 144157. 
[13] 
Pablo RodriguezRamirez and Michael Basin, An optimal impulsive control regulator for linear systems, Numerical Algebra, Control and Optimization, 1 (2011), 275282. 
[14] 
M. Tarfaoui and S. Akesbi, A finite element model of mechanical properties of plain weave, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 187188 (2001), 439448. doi: 10.1016/S09277757(01)006112. 
[15] 
K. L. Teo, C. J. Goh and K. H. Wong, "A Unified Computational Approach to Optimal Control Problems," Pitman Monographs and Surveys in Pure and Applied Mathematics, 55, Longman Scientific & Technical, Harlow, copublished in the United States with John Wiley & Sons, Inc., New York, 1991. 
[16] 
K. F. C. Yiu, K. L. Mak and K. L. Teo, Airfoil design via optimal control theory, Journal of Industrial and Management Optimization, 1 (2005), 133148. doi: 10.3934/jimo.2005.1.133. 
[17] 
D. J. Yao, H. L. Yang and R. M. Wang, Optimal financing and dividend strategies in a dual model with proportional costs, Journal of Industrial and Management Optimization, 6 (2010), 761777. 
[1] 
Scott Gordon. Nonuniformity of deformation preceding shear band formation in a twodimensional model for Granular flow. Communications on Pure and Applied Analysis, 2008, 7 (6) : 13611374. doi: 10.3934/cpaa.2008.7.1361 
[2] 
Lars Lamberg, Lauri Ylinen. TwoDimensional tomography with unknown view angles. Inverse Problems and Imaging, 2007, 1 (4) : 623642. doi: 10.3934/ipi.2007.1.623 
[3] 
Elissar Nasreddine. Twodimensional individual clustering model. Discrete and Continuous Dynamical Systems  S, 2014, 7 (2) : 307316. doi: 10.3934/dcdss.2014.7.307 
[4] 
Jerzy Gawinecki, Wojciech M. Zajączkowski. Global regular solutions to twodimensional thermoviscoelasticity. Communications on Pure and Applied Analysis, 2016, 15 (3) : 10091028. doi: 10.3934/cpaa.2016.15.1009 
[5] 
Ibrahim Fatkullin, Valeriy Slastikov. Diffusive transport in twodimensional nematics. Discrete and Continuous Dynamical Systems  S, 2015, 8 (2) : 323340. doi: 10.3934/dcdss.2015.8.323 
[6] 
Min Chen. Numerical investigation of a twodimensional Boussinesq system. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 11691190. doi: 10.3934/dcds.2009.23.1169 
[7] 
Fumihiko Nakamura, Michael C. Mackey. Asymptotic (statistical) periodicity in twodimensional maps. Discrete and Continuous Dynamical Systems  B, 2021 doi: 10.3934/dcdsb.2021227 
[8] 
Lihui Guo, Wancheng Sheng, Tong Zhang. The twodimensional Riemann problem for isentropic Chaplygin gas dynamic system$^*$. Communications on Pure and Applied Analysis, 2010, 9 (2) : 431458. doi: 10.3934/cpaa.2010.9.431 
[9] 
Florian Kogelbauer. On the symmetry of spatially periodic twodimensional water waves. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 70577061. doi: 10.3934/dcds.2016107 
[10] 
Anke D. Pohl. Symbolic dynamics for the geodesic flow on twodimensional hyperbolic good orbifolds. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 21732241. doi: 10.3934/dcds.2014.34.2173 
[11] 
Muriel Boulakia, AnneClaire Egloffe, Céline Grandmont. Stability estimates for a Robin coefficient in the twodimensional Stokes system. Mathematical Control and Related Fields, 2013, 3 (1) : 2149. doi: 10.3934/mcrf.2013.3.21 
[12] 
FangDi Dong, WanTong Li, Li Zhang. Entire solutions in a twodimensional nonlocal lattice dynamical system. Communications on Pure and Applied Analysis, 2018, 17 (6) : 25172545. doi: 10.3934/cpaa.2018120 
[13] 
Tong Zhang, Yuxi Zheng. Exact spiral solutions of the twodimensional Euler equations. Discrete and Continuous Dynamical Systems, 1997, 3 (1) : 117133. doi: 10.3934/dcds.1997.3.117 
[14] 
Qing Yi. On the Stokes approximation equations for twodimensional compressible flows. Kinetic and Related Models, 2013, 6 (1) : 205218. doi: 10.3934/krm.2013.6.205 
[15] 
Qun Liu, Lihua Fu, Meng Zhang, Wanjuan Zhang. Twodimensional seismic data reconstruction using patch tensor completion. Inverse Problems and Imaging, 2020, 14 (6) : 9851000. doi: 10.3934/ipi.2020052 
[16] 
Marc Briane, David Manceau. Duality results in the homogenization of twodimensional highcontrast conductivities. Networks and Heterogeneous Media, 2008, 3 (3) : 509522. doi: 10.3934/nhm.2008.3.509 
[17] 
Caterina Balzotti, Simone Göttlich. A twodimensional multiclass traffic flow model. Networks and Heterogeneous Media, 2021, 16 (1) : 6990. doi: 10.3934/nhm.2020034 
[18] 
Lorenzo Sella, Pieter Collins. Computation of symbolic dynamics for twodimensional piecewiseaffine maps. Discrete and Continuous Dynamical Systems  B, 2011, 15 (3) : 739767. doi: 10.3934/dcdsb.2011.15.739 
[19] 
Huijiang Zhao, Qingsong Zhao. Radially symmetric stationary wave for twodimensional Burgers equation. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 21672185. doi: 10.3934/dcds.2020357 
[20] 
Wen Deng. Resolvent estimates for a twodimensional nonselfadjoint operator. Communications on Pure and Applied Analysis, 2013, 12 (1) : 547596. doi: 10.3934/cpaa.2013.12.547 
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]