
Previous Article
Joint backoff control in time and frequency for multichannel wireless systems and its Markov model for analysis
 DCDSB Home
 This Issue

Next Article
Feature extraction of the patterned textile with deformations via optimal control theory
Synchronization of chaotic systems with timevarying coupling delays
1.  Texas A&M University at Qatar, Doha, P.O.Box 23874, Qatar 
2.  Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China 
3.  Institute for Physics, University of Potsdam, Am Neuen Palais, Gebude 19, D14415 Potsdam, Germany 
References:
[1] 
S. Boccaletti, J. Kurths, G. Osipov, D. L. Vallares and C. S. Zhou, The synchronization of chaotic systems, Phys. Rep., 366 (2002), 1101. doi: 10.1016/S03701573(02)001370. 
[2] 
S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, "Linear Matrix Inequalities In Systems And Control Theory," SIAM Studies in Applied Mathematics, 15, SIAM, Philadephia, PA, 1994. 
[3] 
J. Cao and J. Lu, Adaptive synchronization of neural networks with or without timevarying delay, Chaos, 16 (2006), 013133, 6 pp. 
[4] 
P. Colet and R. Roy, Digital communication with synchronized chaotic lasers, Opt. Lett., 19 (1994), 2056. doi: 10.1364/OL.19.002056. 
[5] 
K. Gopalsamy, "Stability and Oscillations in Delay Differential Equations of Population Dynamics," Mathematics and its Applications, 74, Kluwer Academic Publishers Group, Dordrecht, 1992. 
[6] 
H. G. Schuster, ed., "Handbook of Chaos Control: Foundations and Applications," WileyVCH, Weinheim, 1999. 
[7] 
H. Huang, G. Feng and Y. Sun, Robust synchronization of chaotic systems subject to parameter uncertainties, Chaos, 19 (2009), 033128. doi: 10.1063/1.3212940. 
[8] 
T. Huang, C. Li and X. Liu, Synchronization of chaotic systems with delay using intermittent linear state feedback, Chaos, 18 (2008), 033122, 8 pp. 
[9] 
C. Li, G. Feng and X. Liao, Stabilization of nonlinear systems via periodically intermittent control, IEEE Trans. Circuits and Systems II, 54 (2006), 10191023. 
[10] 
C. Li, X. Liao and K. Wong, Chaotic lag synchronization of coupled timedelayed systems and its application in secure communication, Physica D, 194 (2004), 187202. doi: 10.1016/j.physd.2004.02.005. 
[11] 
X. Liu, T. Chen and W. Lu, Cluster synchronization for linearly coupled complex networks, Journal of Industrial and Management Optimization (JIMO), 7 (2011), 87101. doi: 10.3934/jimo.2011.7.87. 
[12] 
J. Lu, J. Cao and D. Ho, Adaptive stabilization and synchronization for chaotic lur’e systems with timevarying delay, IEEE Transactions on Circuits and Systems I: Regular Papers, 55 (2008), 13471356. doi: 10.1109/TCSI.2008.916462. 
[13] 
L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett., 64 (1990), 821824. doi: 10.1103/PhysRevLett.64.821. 
[14] 
J. Qing, Projective synchronization of a new hyperchaotic Lorenz system, Physics Letters A, 370 (2007), 4045. doi: 10.1016/j.physleta.2007.05.028. 
[15] 
F. Rogister, D. Pieroux, M. Sciamanna, P. Megret and M. Blondel, Anticipating synchronization of two chaotic laser diodes by incoherent optical coupling and its application to secure communications, Optics Communications, 207 (2002), 295306. doi: 10.1016/S00304018(02)014943. 
[16] 
M. Rosenblum and A. Pikovsky, Phase synchronization of chaotic oscillators, Phys. Rev. Lett., 76 (1996), 18041807. doi: 10.1103/PhysRevLett.76.1804. 
[17] 
N. Rulkov and M. Sushchik, Generalized synchronization of chaos in directionally coupled chaotic systems, Phys. Rev. E, 51 (1995), 980994. doi: 10.1103/PhysRevE.51.980. 
[18] 
S. Sivaprakasam and P. Spencer, Regimes of chaotic synchronization in externalcavity laser diodes, IEEE Journal of Quantum Electronics, 38 (2002), 11551161. doi: 10.1109/JQE.2002.801949. 
[19] 
Q. Song and J. Cao, Global dissipativity analysis on uncertain neural networks with mixed timevarying delays, Chaos, 18 (2008), 043126, 10 pp. 
[20] 
K. Thornburg, M. Moller, R. Roy and T. Carr, Chaos and coherence in coupled lasers, Phys. Rev. E, 55 (1997), 3865. doi: 10.1103/PhysRevE.55.3865. 
[21] 
J. Wang, Z. Yang, T. Huang and M. Xiao, Local and global exponential synchronization of complex delayed dynamical networks with general topology, Discrete and Continuous Dynamical SystemsSeries B, 16 (2011), 393408. doi: 10.3934/dcdsb.2011.16.393. 
[22] 
R. Zhen, X. Wu and J. Zhang, "Sliding Model Synchronization Controller Design for Chaotic Neural Network with TimeVarying Delay," Proceedings of the 8th World Congress on Intelligent Control and Automation, China, (2010), 39143919. doi: 10.1109/WCICA.2010.5554977. 
show all references
References:
[1] 
S. Boccaletti, J. Kurths, G. Osipov, D. L. Vallares and C. S. Zhou, The synchronization of chaotic systems, Phys. Rep., 366 (2002), 1101. doi: 10.1016/S03701573(02)001370. 
[2] 
S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, "Linear Matrix Inequalities In Systems And Control Theory," SIAM Studies in Applied Mathematics, 15, SIAM, Philadephia, PA, 1994. 
[3] 
J. Cao and J. Lu, Adaptive synchronization of neural networks with or without timevarying delay, Chaos, 16 (2006), 013133, 6 pp. 
[4] 
P. Colet and R. Roy, Digital communication with synchronized chaotic lasers, Opt. Lett., 19 (1994), 2056. doi: 10.1364/OL.19.002056. 
[5] 
K. Gopalsamy, "Stability and Oscillations in Delay Differential Equations of Population Dynamics," Mathematics and its Applications, 74, Kluwer Academic Publishers Group, Dordrecht, 1992. 
[6] 
H. G. Schuster, ed., "Handbook of Chaos Control: Foundations and Applications," WileyVCH, Weinheim, 1999. 
[7] 
H. Huang, G. Feng and Y. Sun, Robust synchronization of chaotic systems subject to parameter uncertainties, Chaos, 19 (2009), 033128. doi: 10.1063/1.3212940. 
[8] 
T. Huang, C. Li and X. Liu, Synchronization of chaotic systems with delay using intermittent linear state feedback, Chaos, 18 (2008), 033122, 8 pp. 
[9] 
C. Li, G. Feng and X. Liao, Stabilization of nonlinear systems via periodically intermittent control, IEEE Trans. Circuits and Systems II, 54 (2006), 10191023. 
[10] 
C. Li, X. Liao and K. Wong, Chaotic lag synchronization of coupled timedelayed systems and its application in secure communication, Physica D, 194 (2004), 187202. doi: 10.1016/j.physd.2004.02.005. 
[11] 
X. Liu, T. Chen and W. Lu, Cluster synchronization for linearly coupled complex networks, Journal of Industrial and Management Optimization (JIMO), 7 (2011), 87101. doi: 10.3934/jimo.2011.7.87. 
[12] 
J. Lu, J. Cao and D. Ho, Adaptive stabilization and synchronization for chaotic lur’e systems with timevarying delay, IEEE Transactions on Circuits and Systems I: Regular Papers, 55 (2008), 13471356. doi: 10.1109/TCSI.2008.916462. 
[13] 
L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett., 64 (1990), 821824. doi: 10.1103/PhysRevLett.64.821. 
[14] 
J. Qing, Projective synchronization of a new hyperchaotic Lorenz system, Physics Letters A, 370 (2007), 4045. doi: 10.1016/j.physleta.2007.05.028. 
[15] 
F. Rogister, D. Pieroux, M. Sciamanna, P. Megret and M. Blondel, Anticipating synchronization of two chaotic laser diodes by incoherent optical coupling and its application to secure communications, Optics Communications, 207 (2002), 295306. doi: 10.1016/S00304018(02)014943. 
[16] 
M. Rosenblum and A. Pikovsky, Phase synchronization of chaotic oscillators, Phys. Rev. Lett., 76 (1996), 18041807. doi: 10.1103/PhysRevLett.76.1804. 
[17] 
N. Rulkov and M. Sushchik, Generalized synchronization of chaos in directionally coupled chaotic systems, Phys. Rev. E, 51 (1995), 980994. doi: 10.1103/PhysRevE.51.980. 
[18] 
S. Sivaprakasam and P. Spencer, Regimes of chaotic synchronization in externalcavity laser diodes, IEEE Journal of Quantum Electronics, 38 (2002), 11551161. doi: 10.1109/JQE.2002.801949. 
[19] 
Q. Song and J. Cao, Global dissipativity analysis on uncertain neural networks with mixed timevarying delays, Chaos, 18 (2008), 043126, 10 pp. 
[20] 
K. Thornburg, M. Moller, R. Roy and T. Carr, Chaos and coherence in coupled lasers, Phys. Rev. E, 55 (1997), 3865. doi: 10.1103/PhysRevE.55.3865. 
[21] 
J. Wang, Z. Yang, T. Huang and M. Xiao, Local and global exponential synchronization of complex delayed dynamical networks with general topology, Discrete and Continuous Dynamical SystemsSeries B, 16 (2011), 393408. doi: 10.3934/dcdsb.2011.16.393. 
[22] 
R. Zhen, X. Wu and J. Zhang, "Sliding Model Synchronization Controller Design for Chaotic Neural Network with TimeVarying Delay," Proceedings of the 8th World Congress on Intelligent Control and Automation, China, (2010), 39143919. doi: 10.1109/WCICA.2010.5554977. 
[1] 
Quan Hai, Shutang Liu. Meansquare delaydistributiondependent exponential synchronization of chaotic neural networks with mixed random timevarying delays and restricted disturbances. Discrete and Continuous Dynamical Systems  B, 2021, 26 (6) : 30973118. doi: 10.3934/dcdsb.2020221 
[2] 
Carlos Nonato, Manoel Jeremias dos Santos, Carlos Raposo. Dynamics of Timoshenko system with timevarying weight and timevarying delay. Discrete and Continuous Dynamical Systems  B, 2022, 27 (1) : 523553. doi: 10.3934/dcdsb.2021053 
[3] 
Yangzi Hu, Fuke Wu. The improved results on the stochastic Kolmogorov system with timevarying delay. Discrete and Continuous Dynamical Systems  B, 2015, 20 (5) : 14811497. doi: 10.3934/dcdsb.2015.20.1481 
[4] 
Juanjuan Huang, Yan Zhou, Xuerong Shi, Zuolei Wang. A single finitetime synchronization scheme of timedelay chaotic system with external periodic disturbance. Mathematical Foundations of Computing, 2019, 2 (4) : 333346. doi: 10.3934/mfc.2019021 
[5] 
Xiao Wang, Zhaohui Yang, Xiongwei Liu. Periodic and almost periodic oscillations in a delay differential equation system with timevarying coefficients. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 61236138. doi: 10.3934/dcds.2017263 
[6] 
XinGuang Yang, Jing Zhang, Shu Wang. Stability and dynamics of a weak viscoelastic system with memory and nonlinear timevarying delay. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 14931515. doi: 10.3934/dcds.2020084 
[7] 
Mokhtar Kirane, Belkacem SaidHouari, Mohamed Naim Anwar. Stability result for the Timoshenko system with a timevarying delay term in the internal feedbacks. Communications on Pure and Applied Analysis, 2011, 10 (2) : 667686. doi: 10.3934/cpaa.2011.10.667 
[8] 
Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary timevarying delay. Discrete and Continuous Dynamical Systems  S, 2011, 4 (3) : 693722. doi: 10.3934/dcdss.2011.4.693 
[9] 
Baowei Feng, Carlos Alberto Raposo, Carlos Alberto Nonato, Abdelaziz Soufyane. Analysis of exponential stabilization for RaoNakra sandwich beam with timevarying weight and timevarying delay: Multiplier method versus observability. Mathematical Control and Related Fields, 2022 doi: 10.3934/mcrf.2022011 
[10] 
Ruoxia Li, Huaiqin Wu, Xiaowei Zhang, Rong Yao. Adaptive projective synchronization of memristive neural networks with timevarying delays and stochastic perturbation. Mathematical Control and Related Fields, 2015, 5 (4) : 827844. doi: 10.3934/mcrf.2015.5.827 
[11] 
Zhen Zhang, Jianhua Huang, Xueke Pu. Pullback attractors of FitzHughNagumo system on the timevarying domains. Discrete and Continuous Dynamical Systems  B, 2017, 22 (10) : 36913706. doi: 10.3934/dcdsb.2017150 
[12] 
Di Wu, Yanqin Bai, Fusheng Xie. Timescaling transformation for optimal control problem with timevarying delay. Discrete and Continuous Dynamical Systems  S, 2020, 13 (6) : 16831695. doi: 10.3934/dcdss.2020098 
[13] 
XinGuang Yang. An Erratum on "Stability and dynamics of a weak viscoelastic system with memory and nonlinear timevarying delay" (Discrete Continuous Dynamic Systems, 40(3), 2020, 14931515). Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 14931494. doi: 10.3934/dcds.2021161 
[14] 
Dinh Cong Huong, Mai Viet Thuan. State transformations of timevarying delay systems and their applications to state observer design. Discrete and Continuous Dynamical Systems  S, 2017, 10 (3) : 413444. doi: 10.3934/dcdss.2017020 
[15] 
K. Aruna Sakthi, A. Vinodkumar. Stabilization on input timevarying delay for linear switched systems with truncated predictor control. Numerical Algebra, Control and Optimization, 2020, 10 (2) : 237247. doi: 10.3934/naco.2019050 
[16] 
Ferhat Mohamed, Hakem Ali. Energy decay of solutions for the wave equation with a timevarying delay term in the weakly nonlinear internal feedbacks. Discrete and Continuous Dynamical Systems  B, 2017, 22 (2) : 491506. doi: 10.3934/dcdsb.2017024 
[17] 
Ling Zhang, Xiaoqi Sun. Stability analysis of timevarying delay neural network for convex quadratic programming with equality constraints and inequality constraints. Discrete and Continuous Dynamical Systems  B, 2022 doi: 10.3934/dcdsb.2022035 
[18] 
Jianping Zhou, Yamin Liu, Ju H. Park, Qingkai Kong, Zhen Wang. Faulttolerant antisynchronization control for chaotic switched neural networks with time delay and reaction diffusion. Discrete and Continuous Dynamical Systems  S, 2021, 14 (4) : 15691589. doi: 10.3934/dcdss.2020357 
[19] 
Aowen Kong, Carlos Nonato, Wenjun Liu, Manoel Jeremias dos Santos, Carlos Raposo. Equivalence between exponential stabilization and observability inequality for magnetic effected piezoelectric beams with timevarying delay and timedependent weights. Discrete and Continuous Dynamical Systems  B, 2022, 27 (6) : 29592978. doi: 10.3934/dcdsb.2021168 
[20] 
Abdelfettah Hamzaoui, Nizar Hadj Taieb, Mohamed Ali Hammami. Practical partial stability of timevarying systems. Discrete and Continuous Dynamical Systems  B, 2022, 27 (7) : 35853603. doi: 10.3934/dcdsb.2021197 
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]