\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Synchronization of chaotic systems with time-varying coupling delays

Abstract Related Papers Cited by
  • In this paper, we study the complete synchronization of a class of time-varying delayed coupled chaotic systems using feedback control. In terms of Linear Matrix Inequalities, a sufficient condition is obtained through using a Lyapunov-Krasovskii functional and differential equation inequalities. The conditions can be easily verified and implemented. We present two simulation examples to illustrate the effectiveness of the proposed method.
    Mathematics Subject Classification: Primary: 34A20, 34G20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. Boccaletti, J. Kurths, G. Osipov, D. L. Vallares and C. S. Zhou, The synchronization of chaotic systems, Phys. Rep., 366 (2002), 1-101.doi: 10.1016/S0370-1573(02)00137-0.

    [2]

    S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, "Linear Matrix Inequalities In Systems And Control Theory," SIAM Studies in Applied Mathematics, 15, SIAM, Philadephia, PA, 1994.

    [3]

    J. Cao and J. Lu, Adaptive synchronization of neural networks with or without time-varying delay, Chaos, 16 (2006), 013133, 6 pp.

    [4]

    P. Colet and R. Roy, Digital communication with synchronized chaotic lasers, Opt. Lett., 19 (1994), 2056.doi: 10.1364/OL.19.002056.

    [5]

    K. Gopalsamy, "Stability and Oscillations in Delay Differential Equations of Population Dynamics," Mathematics and its Applications, 74, Kluwer Academic Publishers Group, Dordrecht, 1992.

    [6]

    H. G. Schuster, ed., "Handbook of Chaos Control: Foundations and Applications," Wiley-VCH, Weinheim, 1999.

    [7]

    H. Huang, G. Feng and Y. Sun, Robust synchronization of chaotic systems subject to parameter uncertainties, Chaos, 19 (2009), 033128.doi: 10.1063/1.3212940.

    [8]

    T. Huang, C. Li and X. Liu, Synchronization of chaotic systems with delay using intermittent linear state feedback, Chaos, 18 (2008), 033122, 8 pp.

    [9]

    C. Li, G. Feng and X. Liao, Stabilization of nonlinear systems via periodically intermittent control, IEEE Trans. Circuits and Systems II, 54 (2006), 1019-1023.

    [10]

    C. Li, X. Liao and K. Wong, Chaotic lag synchronization of coupled time-delayed systems and its application in secure communication, Physica D, 194 (2004), 187-202.doi: 10.1016/j.physd.2004.02.005.

    [11]

    X. Liu, T. Chen and W. Lu, Cluster synchronization for linearly coupled complex networks, Journal of Industrial and Management Optimization (JIMO), 7 (2011), 87-101.doi: 10.3934/jimo.2011.7.87.

    [12]

    J. Lu, J. Cao and D. Ho, Adaptive stabilization and synchronization for chaotic lur’e systems with time-varying delay, IEEE Transactions on Circuits and Systems I: Regular Papers, 55 (2008), 1347-1356.doi: 10.1109/TCSI.2008.916462.

    [13]

    L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett., 64 (1990), 821-824.doi: 10.1103/PhysRevLett.64.821.

    [14]

    J. Qing, Projective synchronization of a new hyperchaotic Lorenz system, Physics Letters A, 370 (2007), 40-45.doi: 10.1016/j.physleta.2007.05.028.

    [15]

    F. Rogister, D. Pieroux, M. Sciamanna, P. Megret and M. Blondel, Anticipating synchronization of two chaotic laser diodes by incoherent optical coupling and its application to secure communications, Optics Communications, 207 (2002), 295-306.doi: 10.1016/S0030-4018(02)01494-3.

    [16]

    M. Rosenblum and A. Pikovsky, Phase synchronization of chaotic oscillators, Phys. Rev. Lett., 76 (1996), 1804-1807.doi: 10.1103/PhysRevLett.76.1804.

    [17]

    N. Rulkov and M. Sushchik, Generalized synchronization of chaos in directionally coupled chaotic systems, Phys. Rev. E, 51 (1995), 980-994.doi: 10.1103/PhysRevE.51.980.

    [18]

    S. Sivaprakasam and P. Spencer, Regimes of chaotic synchronization in external-cavity laser diodes, IEEE Journal of Quantum Electronics, 38 (2002), 1155-1161.doi: 10.1109/JQE.2002.801949.

    [19]

    Q. Song and J. Cao, Global dissipativity analysis on uncertain neural networks with mixed time-varying delays, Chaos, 18 (2008), 043126, 10 pp.

    [20]

    K. Thornburg, M. Moller, R. Roy and T. Carr, Chaos and coherence in coupled lasers, Phys. Rev. E, 55 (1997), 3865.doi: 10.1103/PhysRevE.55.3865.

    [21]

    J. Wang, Z. Yang, T. Huang and M. Xiao, Local and global exponential synchronization of complex delayed dynamical networks with general topology, Discrete and Continuous Dynamical Systems-Series B, 16 (2011), 393-408.doi: 10.3934/dcdsb.2011.16.393.

    [22]

    R. Zhen, X. Wu and J. Zhang, "Sliding Model Synchronization Controller Design for Chaotic Neural Network with Time-Varying Delay," Proceedings of the 8th World Congress on Intelligent Control and Automation, China, (2010), 3914-3919.doi: 10.1109/WCICA.2010.5554977.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(81) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return