November  2011, 16(4): 1083-1099. doi: 10.3934/dcdsb.2011.16.1083

Joint backoff control in time and frequency for multichannel wireless systems and its Markov model for analysis

1. 

School of Electrical and Electronic Engineering, The University of Adelaide, 5005, Australia

2. 

School of Electrical and Electronic Engineering, The University of Adelaide, SA 5005

3. 

College of Engineering, Swansea University, UK SA2 8PP, United Kingdom

Received  October 2010 Revised  March 2011 Published  August 2011

A new joint random access scheme is proposed to enable effective uplink access when users are partially aware of channel conditions in multichannel wireless systems. The proposed scheme mitigates packet collisions with joint backoff control in the time and frequency domains, cooperating with a sensing method that exploits the channel conditions. The performance analysis of the joint access scheme is facilitated by a Markov model that provides a closed-form throughput expression. Simulation results show that this channel access scheme, working together with a simple sensing method, offers significant improvements to system throughput.
Citation: Hyukjin Lee, Cheng-Chew Lim, Jinho Choi. Joint backoff control in time and frequency for multichannel wireless systems and its Markov model for analysis. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1083-1099. doi: 10.3934/dcdsb.2011.16.1083
References:
[1]

I. Koffman and V. Roman, Broadband wireless access solutions based on OFDM access in IEEE 802.16,, IEEE Comm. Magazine, 40 (2002), 96.  doi: 10.1109/35.995857.  Google Scholar

[2]

IEEE Std. 802.16e, "IEEE Standard for Local and Metropolitan Area Wireless Access Systems Amendment for Physical and Medium Access Control Layer for Combined Fixed and Mobile Operation in Licensed Bands,", Dec. 2005., (2005).   Google Scholar

[3]

L. Wang and A. Chen, Optimal radio resource partition for joint contention- and connection-oriented multichannel access in OFDMA systems,, IEEE Trans. on Mobile Computing, 8 (2009), 162.  doi: 10.1109/TMC.2008.96.  Google Scholar

[4]

P. Zhou, H. Hu, H. Wang and H. Chen, An efficient random access scheme for OFDMA systems with implicit message transmission,, IEEE Trans. on Wireless Comm., 7 (2008), 2790.  doi: 10.1109/TWC.2008.070173.  Google Scholar

[5]

H. Kwon, S. Kim and B. G. Lee, Generalised CSMA/CA for OFDMA systems: Protocol design, throughput analysis, and implementation issues,, IEEE Trans. on Wireless Comm., 8 (2009), 4176.  doi: 10.1109/TWC.2009.080816.  Google Scholar

[6]

Y. J. Choi, S. Park and S. Bahk, Multichannel random access in OFDMA wireless networks,, IEEE Journal on Selected Areas in Comm., 24 (2006), 603.  doi: 10.1109/JSAC.2005.862422.  Google Scholar

[7]

W. Huang, J. Choi and K. S. Kim, On the Impact of Channel Outage on the Throughput of Fast Retrial Random Access for OFDMA Uplink,, Proc. IEEE VTC 2008, (2008), 1940.   Google Scholar

[8]

K. Bai and J. Zhang, Opportunistic multichannel aloha: Distributed multiaccess control scheme for OFDMA wireless networks,, IEEE Trans. on Vehicular Tech., 55 (2006), 848.  doi: 10.1109/TVT.2006.874119.  Google Scholar

[9]

Y. Yu and G. B. Giannakis, Opportunistic medium access for wireless networking adapted to decentralised CSI,, IEEE Trans. on Wireless Comm., 5 (2006), 1445.  doi: 10.1109/TWC.2006.1638665.  Google Scholar

[10]

P. Pawelczak, S. Pollin, H. W. So, A. R. S. Bahai, R. V. Prasad and R. Hekmat, Performance analysis of multichannel medium access control algorithms for opportunistic spectrum access,, IEEE Trans. on Vehicular Tech., 58 (2009), 3014.  doi: 10.1109/TVT.2008.2009350.  Google Scholar

[11]

Q. Zhao, L. Tong, A. Swami and Y. Chen, Decentralised Cognitive MAC for opportunistic spectrum access in ad hoc networks: A POMDP framework,, IEEE Journal on Selected Areas in Comm., 25 (2007), 589.  doi: 10.1109/JSAC.2007.070409.  Google Scholar

[12]

Q. Zhao, B. Krishnamachari and K. Liu, On Myopic sensing for multi-channel opportunistic access: Structure, optimality, and performance,, IEEE Trans. on Wireless Comm., 7 (2008), 5431.  doi: 10.1109/T-WC.2008.071349.  Google Scholar

[13]

A. Cheng and C. C. Lim, Markov modelling and parameterisation of genetic evolutionary test generations,, Journal of Global Optimization, (2011).  doi: 10.1007/s10898-011-9682-5.  Google Scholar

[14]

IEEE 802.11a, "Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-speed Physical Layer in the 5 GHz Band,", Supplement to IEEE 802.11 Standard, (1999).   Google Scholar

[15]

Z. G. Feng, K. L. Teo and V. Rehbock, Optimal sensor scheduling in continuous time,, Dynamic Systems and Applications, 17 (2008), 331.   Google Scholar

[16]

K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems,, Pitman Monographs and Surveys in Pure and Applied Mathematics, 55 (1991).   Google Scholar

[17]

R. Smallwood and E. Sondik, The optimal control of partially observable Markov processes over a finite horizon,, Operation Research, (1971), 1071.   Google Scholar

[18]

T. E. Duncan, Some topics in stochastic control,, Discrete and Continuous Dynamical Systems - Series B, 14 (2010), 1361.   Google Scholar

[19]

K. D. Phung, G. Wang, and X. Zhang, On the existence of time optimal controls for linear evolution equations,, Discrete and Continuous Dynamical Systems - Series B, 8 (2007), 925.   Google Scholar

[20]

B. Li, K. L. Teo and G. R. Duan, Optimal contorl computation for discrete time tim-delayed optimal contorl problem with all-time-step inequality cosntraints,, Internatioanl Journal of Innovative Computing, 6 (2010), 3157.   Google Scholar

[21]

D. Jeong and W. Jeon, Performance of an exponential backoff scheme for slotted-Aloha protocol in local wireless environment,, IEEE Trans. on Vehicular Tech., 44 (1995), 470.  doi: 10.1109/25.406614.  Google Scholar

[22]

G. Bianchi, Performance analysis of the IEEE 802.11 distributed coordination function,, IEEE Journal on Selected Areas in Comm., 18 (2000), 535.  doi: 10.1109/49.840210.  Google Scholar

[23]

B. Kwak, N. Song and L. E. Miller, Performance analysis of exponential backoff,, IEEE Trans. on Networking, 13 (2005), 343.   Google Scholar

[24]

C. Z. Wu, K. L. Teo, V. Rehbock and G. G. Liu, Existence and uniqueness of solution of piecewise nonlinear systems,, Nonlinear Analysis, 71 (2009), 6109.  doi: 10.1016/j.na.2009.06.001.  Google Scholar

show all references

References:
[1]

I. Koffman and V. Roman, Broadband wireless access solutions based on OFDM access in IEEE 802.16,, IEEE Comm. Magazine, 40 (2002), 96.  doi: 10.1109/35.995857.  Google Scholar

[2]

IEEE Std. 802.16e, "IEEE Standard for Local and Metropolitan Area Wireless Access Systems Amendment for Physical and Medium Access Control Layer for Combined Fixed and Mobile Operation in Licensed Bands,", Dec. 2005., (2005).   Google Scholar

[3]

L. Wang and A. Chen, Optimal radio resource partition for joint contention- and connection-oriented multichannel access in OFDMA systems,, IEEE Trans. on Mobile Computing, 8 (2009), 162.  doi: 10.1109/TMC.2008.96.  Google Scholar

[4]

P. Zhou, H. Hu, H. Wang and H. Chen, An efficient random access scheme for OFDMA systems with implicit message transmission,, IEEE Trans. on Wireless Comm., 7 (2008), 2790.  doi: 10.1109/TWC.2008.070173.  Google Scholar

[5]

H. Kwon, S. Kim and B. G. Lee, Generalised CSMA/CA for OFDMA systems: Protocol design, throughput analysis, and implementation issues,, IEEE Trans. on Wireless Comm., 8 (2009), 4176.  doi: 10.1109/TWC.2009.080816.  Google Scholar

[6]

Y. J. Choi, S. Park and S. Bahk, Multichannel random access in OFDMA wireless networks,, IEEE Journal on Selected Areas in Comm., 24 (2006), 603.  doi: 10.1109/JSAC.2005.862422.  Google Scholar

[7]

W. Huang, J. Choi and K. S. Kim, On the Impact of Channel Outage on the Throughput of Fast Retrial Random Access for OFDMA Uplink,, Proc. IEEE VTC 2008, (2008), 1940.   Google Scholar

[8]

K. Bai and J. Zhang, Opportunistic multichannel aloha: Distributed multiaccess control scheme for OFDMA wireless networks,, IEEE Trans. on Vehicular Tech., 55 (2006), 848.  doi: 10.1109/TVT.2006.874119.  Google Scholar

[9]

Y. Yu and G. B. Giannakis, Opportunistic medium access for wireless networking adapted to decentralised CSI,, IEEE Trans. on Wireless Comm., 5 (2006), 1445.  doi: 10.1109/TWC.2006.1638665.  Google Scholar

[10]

P. Pawelczak, S. Pollin, H. W. So, A. R. S. Bahai, R. V. Prasad and R. Hekmat, Performance analysis of multichannel medium access control algorithms for opportunistic spectrum access,, IEEE Trans. on Vehicular Tech., 58 (2009), 3014.  doi: 10.1109/TVT.2008.2009350.  Google Scholar

[11]

Q. Zhao, L. Tong, A. Swami and Y. Chen, Decentralised Cognitive MAC for opportunistic spectrum access in ad hoc networks: A POMDP framework,, IEEE Journal on Selected Areas in Comm., 25 (2007), 589.  doi: 10.1109/JSAC.2007.070409.  Google Scholar

[12]

Q. Zhao, B. Krishnamachari and K. Liu, On Myopic sensing for multi-channel opportunistic access: Structure, optimality, and performance,, IEEE Trans. on Wireless Comm., 7 (2008), 5431.  doi: 10.1109/T-WC.2008.071349.  Google Scholar

[13]

A. Cheng and C. C. Lim, Markov modelling and parameterisation of genetic evolutionary test generations,, Journal of Global Optimization, (2011).  doi: 10.1007/s10898-011-9682-5.  Google Scholar

[14]

IEEE 802.11a, "Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-speed Physical Layer in the 5 GHz Band,", Supplement to IEEE 802.11 Standard, (1999).   Google Scholar

[15]

Z. G. Feng, K. L. Teo and V. Rehbock, Optimal sensor scheduling in continuous time,, Dynamic Systems and Applications, 17 (2008), 331.   Google Scholar

[16]

K. L. Teo, C. J. Goh and K. H. Wong, A Unified Computational Approach to Optimal Control Problems,, Pitman Monographs and Surveys in Pure and Applied Mathematics, 55 (1991).   Google Scholar

[17]

R. Smallwood and E. Sondik, The optimal control of partially observable Markov processes over a finite horizon,, Operation Research, (1971), 1071.   Google Scholar

[18]

T. E. Duncan, Some topics in stochastic control,, Discrete and Continuous Dynamical Systems - Series B, 14 (2010), 1361.   Google Scholar

[19]

K. D. Phung, G. Wang, and X. Zhang, On the existence of time optimal controls for linear evolution equations,, Discrete and Continuous Dynamical Systems - Series B, 8 (2007), 925.   Google Scholar

[20]

B. Li, K. L. Teo and G. R. Duan, Optimal contorl computation for discrete time tim-delayed optimal contorl problem with all-time-step inequality cosntraints,, Internatioanl Journal of Innovative Computing, 6 (2010), 3157.   Google Scholar

[21]

D. Jeong and W. Jeon, Performance of an exponential backoff scheme for slotted-Aloha protocol in local wireless environment,, IEEE Trans. on Vehicular Tech., 44 (1995), 470.  doi: 10.1109/25.406614.  Google Scholar

[22]

G. Bianchi, Performance analysis of the IEEE 802.11 distributed coordination function,, IEEE Journal on Selected Areas in Comm., 18 (2000), 535.  doi: 10.1109/49.840210.  Google Scholar

[23]

B. Kwak, N. Song and L. E. Miller, Performance analysis of exponential backoff,, IEEE Trans. on Networking, 13 (2005), 343.   Google Scholar

[24]

C. Z. Wu, K. L. Teo, V. Rehbock and G. G. Liu, Existence and uniqueness of solution of piecewise nonlinear systems,, Nonlinear Analysis, 71 (2009), 6109.  doi: 10.1016/j.na.2009.06.001.  Google Scholar

[1]

Shunfu Jin, Wuyi Yue, Shiying Ge. Equilibrium analysis of an opportunistic spectrum access mechanism with imperfect sensing results. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1255-1271. doi: 10.3934/jimo.2016071

[2]

Yuan Zhao, Wuyi Yue. Performance evaluation and optimization of cognitive radio networks with adjustable access control for multiple secondary users. Journal of Industrial & Management Optimization, 2019, 15 (1) : 1-14. doi: 10.3934/jimo.2018029

[3]

Oscar Patterson-Lomba, Muntaser Safan, Sherry Towers, Jay Taylor. Modeling the role of healthcare access inequalities in epidemic outcomes. Mathematical Biosciences & Engineering, 2016, 13 (5) : 1011-1041. doi: 10.3934/mbe.2016028

[4]

Motahhareh Gharahi, Massoud Hadian Dehkordi. Average complexities of access structures on five participants. Advances in Mathematics of Communications, 2013, 7 (3) : 311-317. doi: 10.3934/amc.2013.7.311

[5]

Fumio Ishizaki. Analysis of the statistical time-access fairness index of one-bit feedback fair scheduler. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 675-689. doi: 10.3934/naco.2011.1.675

[6]

Hyeon Je Cho, Ganguk Hwang. Optimal design for dynamic spectrum access in cognitive radio networks under Rayleigh fading. Journal of Industrial & Management Optimization, 2012, 8 (4) : 821-840. doi: 10.3934/jimo.2012.8.821

[7]

Motahhareh Gharahi, Shahram Khazaei. Reduced access structures with four minimal qualified subsets on six participants. Advances in Mathematics of Communications, 2018, 12 (1) : 199-214. doi: 10.3934/amc.2018014

[8]

Jinsong Xu. Reversible hidden data access algorithm in cloud computing environment. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1219-1232. doi: 10.3934/dcdss.2019084

[9]

Holger Boche, Rafael F. Schaefer. Arbitrarily varying multiple access channels with conferencing encoders: List decoding and finite coordination resources. Advances in Mathematics of Communications, 2016, 10 (2) : 333-354. doi: 10.3934/amc.2016009

[10]

Haruki Katayama, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. Effect of spectrum sensing overhead on performance for cognitive radio networks with channel bonding. Journal of Industrial & Management Optimization, 2014, 10 (1) : 21-40. doi: 10.3934/jimo.2014.10.21

[11]

Jianping Liu, Shunfu Jin. An imperfect sensing-based channel reservation strategy in CRNs and its performance evaluation. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-21. doi: 10.3934/jimo.2018197

[12]

Shengzhu Jin, Bong Dae Choi, Doo Seop Eom. Performance analysis of binary exponential backoff MAC protocol for cognitive radio in the IEEE 802.16e/m network. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1483-1494. doi: 10.3934/jimo.2017003

[13]

Anupam Gautam, Selvamuthu Dharmaraja. Selection of DRX scheme for voice traffic in LTE-A networks: Markov modeling and performance analysis. Journal of Industrial & Management Optimization, 2019, 15 (2) : 739-756. doi: 10.3934/jimo.2018068

[14]

Sara D. Cardell, Joan-Josep Climent. An approach to the performance of SPC product codes on the erasure channel. Advances in Mathematics of Communications, 2016, 10 (1) : 11-28. doi: 10.3934/amc.2016.10.11

[15]

Jae Deok Kim, Ganguk Hwang. Cross-layer modeling and optimization of multi-channel cognitive radio networks under imperfect channel sensing. Journal of Industrial & Management Optimization, 2015, 11 (3) : 807-828. doi: 10.3934/jimo.2015.11.807

[16]

Sangkyu Baek, Jinsoo Park, Bong Dae Choi. Performance analysis of transmission rate control algorithm from readers to a middleware in intelligent transportation systems. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 357-375. doi: 10.3934/naco.2012.2.357

[17]

Roberto C. Cabrales, Gema Camacho, Enrique Fernández-Cara. Analysis and optimal control of some solidification processes. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 3985-4017. doi: 10.3934/dcds.2014.34.3985

[18]

Kazimierz Malanowski, Helmut Maurer. Sensitivity analysis for state constrained optimal control problems. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 241-272. doi: 10.3934/dcds.1998.4.241

[19]

Eduardo Casas, Konstantinos Chrysafinos. Analysis and optimal control of some quasilinear parabolic equations. Mathematical Control & Related Fields, 2018, 8 (3&4) : 607-623. doi: 10.3934/mcrf.2018025

[20]

Ying Wu, Zhaohui Yuan, Yanpeng Wu. Optimal tracking control for networked control systems with random time delays and packet dropouts. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1343-1354. doi: 10.3934/jimo.2015.11.1343

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]