• Previous Article
    Determination of effective diffusion coefficients of drug delivery devices by a state observer approach
  • DCDS-B Home
  • This Issue
  • Next Article
    Joint backoff control in time and frequency for multichannel wireless systems and its Markov model for analysis
November  2011, 16(4): 1101-1117. doi: 10.3934/dcdsb.2011.16.1101

An optimal PID controller design for nonlinear constrained optimal control problems

1. 

Center for Control Theory and Guidance Technology, Harbin Institute of Technology, Building 2F, Technology Park of Harbin Institute of Technology, Harbin, 150001, China

2. 

Department of Mathematics and Statistics, Curtin University of Technology, GPO Box U 1987, Perth, W.A. 6845

3. 

School of Electrical and Electronic Engineering, The University of Adelaide, SA 5005

4. 

Center for Control Theory and Guidance Technology, Harbin Institute of Technology 210, Building 2F, Technology Park of Harbin Institute of Technology, Harbin, 150001, China

Received  September 2010 Revised  March 2011 Published  August 2011

In this paper, we consider a class of optimal PID control problems subject to continuous inequality constraints and terminal equality constraint. By applying the constraint transcription method and a local smoothing technique to these continuous inequality constraint functions, we construct the corresponding smooth approximate functions. We use the concept of the penalty function to append these smooth approximate functions to the cost function, forming a new cost function. Then, the constrained optimal PID control problem is approximated by a sequence of optimal parameter selection problems subject to only terminal equality constraint. Each of these optimal parameter selection problems can be viewed and hence solved as a nonlinear optimization problem. The gradient formulas of the new appended cost function and the terminal equality constraint function are derived, and a reliable computation algorithm is given. The method proposed is used to solve a ship steering control problem.
Citation: Bin Li, Kok Lay Teo, Cheng-Chew Lim, Guang Ren Duan. An optimal PID controller design for nonlinear constrained optimal control problems. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1101-1117. doi: 10.3934/dcdsb.2011.16.1101
References:
[1]

J. Van Amerongen, Adaptive steering of ships-a model reference approach,, Automatica, 20 (1984), 3.  doi: 10.1016/0005-1098(84)90060-8.  Google Scholar

[2]

M. I. Bech and L. Wangner Smitt, "Analogue Simulation of Ship Manoeuvres,", Hydro and Aerodynamics Lab. Report No. Hy-14, (1969).   Google Scholar

[3]

D. L. Brooke, "The Design of a New Automaticpilot for the Comerical Ship,", First IFAC/IFIP Symosium on Ship Operation Automation, (1973).   Google Scholar

[4]

J. Du, C. Guo, S. Yu and Y. Zhao, Adaptive autopilot design of time-varying uncertain ships with completely unknown control coefficient,, IEEE Journal of Oceanic Engineering, 32 (2007), 346.   Google Scholar

[5]

L. S. Jennings, M. E. Fisher, K. L. Teo and C. J. Goh, "MISER3, Version 3: Optimal Control Software, Theory and User Manual,", 1991., ().   Google Scholar

[6]

L. S. Jennings and K. L. Teo, A computational algorithm for functional inequality constrained optimization problems,, Automatica J. IFAC, 26 (1990), 371.  doi: 10.1016/0005-1098(90)90131-Z.  Google Scholar

[7]

C. C. Lim and W. Forsythe, Autopilot for ship control,, IEE Procedings, 130 (1983), 281.   Google Scholar

[8]

C. Y. Liu, Z. H. Gong and E. M. Feng, Modelling and optimal control for nonlinear multistage dynamical system of microbial fed-batch culture,, Journal of Industrial and Management Optimization, 5 (2009), 835.  doi: 10.3934/jimo.2009.5.835.  Google Scholar

[9]

R. Loxton, K. L. Teo and V. Rehbock, Computational method for a class of swtiched system optimal control problems,, IEEE Transactions on Automatic Control, 54 (2009), 2455.  doi: 10.1109/TAC.2009.2029310.  Google Scholar

[10]

R. Loxton, K. L. Teo, V. Rehbock and K. F. C. Yiu, Optimal control problems with a continuous inequality constraint on the state and the control,, Automatica, 45 (2009), 2250.  doi: 10.1016/j.automatica.2009.05.029.  Google Scholar

[11]

V. Rehbock, C. C. Lim and K. L. Teo, A stable constrained optimal model following controller for discrete-time nonlinear systems affine in control,, Control Theory and Advanced Technology, 10 (1994), 793.   Google Scholar

[12]

K. L. Teo, C. J. Goh and K. H. Wong, "A Unified Computational Approach for Optimal Control Problems,", Pitman Monographs and Surveys in Pure and Applied Mathematics, 55 (1991).   Google Scholar

[13]

K. L. Teo, L. S. Jennings, H. W. J. Lee and V. Rehbock, The control parameterization enhancing transform for constrained optimal control problems,, J. Austral. Math. Soc. Ser. B, 40 (1999), 314.  doi: 10.1017/S0334270000010936.  Google Scholar

[14]

K. L. Teo and C. C. Lim, Time optimal control computation with application to ship steering,, Journal of Optimization Theory and Applicaitons, 56 (1988), 145.  doi: 10.1007/BF00938530.  Google Scholar

[15]

K. L. Teo, V. Rehbock and L. S. Jennings, A new computational algorithm for functional inequality constrained optimization problems,, Automatica J. IFAC, 29 (1993), 789.  doi: 10.1016/0005-1098(93)90076-6.  Google Scholar

[16]

C. Z. Wu and K. L. Teo, Global impulsive optimal control computation,, Journal of Industrial and Management Optimization, 2 (2006), 435.  doi: 10.3934/jimo.2006.2.435.  Google Scholar

show all references

References:
[1]

J. Van Amerongen, Adaptive steering of ships-a model reference approach,, Automatica, 20 (1984), 3.  doi: 10.1016/0005-1098(84)90060-8.  Google Scholar

[2]

M. I. Bech and L. Wangner Smitt, "Analogue Simulation of Ship Manoeuvres,", Hydro and Aerodynamics Lab. Report No. Hy-14, (1969).   Google Scholar

[3]

D. L. Brooke, "The Design of a New Automaticpilot for the Comerical Ship,", First IFAC/IFIP Symosium on Ship Operation Automation, (1973).   Google Scholar

[4]

J. Du, C. Guo, S. Yu and Y. Zhao, Adaptive autopilot design of time-varying uncertain ships with completely unknown control coefficient,, IEEE Journal of Oceanic Engineering, 32 (2007), 346.   Google Scholar

[5]

L. S. Jennings, M. E. Fisher, K. L. Teo and C. J. Goh, "MISER3, Version 3: Optimal Control Software, Theory and User Manual,", 1991., ().   Google Scholar

[6]

L. S. Jennings and K. L. Teo, A computational algorithm for functional inequality constrained optimization problems,, Automatica J. IFAC, 26 (1990), 371.  doi: 10.1016/0005-1098(90)90131-Z.  Google Scholar

[7]

C. C. Lim and W. Forsythe, Autopilot for ship control,, IEE Procedings, 130 (1983), 281.   Google Scholar

[8]

C. Y. Liu, Z. H. Gong and E. M. Feng, Modelling and optimal control for nonlinear multistage dynamical system of microbial fed-batch culture,, Journal of Industrial and Management Optimization, 5 (2009), 835.  doi: 10.3934/jimo.2009.5.835.  Google Scholar

[9]

R. Loxton, K. L. Teo and V. Rehbock, Computational method for a class of swtiched system optimal control problems,, IEEE Transactions on Automatic Control, 54 (2009), 2455.  doi: 10.1109/TAC.2009.2029310.  Google Scholar

[10]

R. Loxton, K. L. Teo, V. Rehbock and K. F. C. Yiu, Optimal control problems with a continuous inequality constraint on the state and the control,, Automatica, 45 (2009), 2250.  doi: 10.1016/j.automatica.2009.05.029.  Google Scholar

[11]

V. Rehbock, C. C. Lim and K. L. Teo, A stable constrained optimal model following controller for discrete-time nonlinear systems affine in control,, Control Theory and Advanced Technology, 10 (1994), 793.   Google Scholar

[12]

K. L. Teo, C. J. Goh and K. H. Wong, "A Unified Computational Approach for Optimal Control Problems,", Pitman Monographs and Surveys in Pure and Applied Mathematics, 55 (1991).   Google Scholar

[13]

K. L. Teo, L. S. Jennings, H. W. J. Lee and V. Rehbock, The control parameterization enhancing transform for constrained optimal control problems,, J. Austral. Math. Soc. Ser. B, 40 (1999), 314.  doi: 10.1017/S0334270000010936.  Google Scholar

[14]

K. L. Teo and C. C. Lim, Time optimal control computation with application to ship steering,, Journal of Optimization Theory and Applicaitons, 56 (1988), 145.  doi: 10.1007/BF00938530.  Google Scholar

[15]

K. L. Teo, V. Rehbock and L. S. Jennings, A new computational algorithm for functional inequality constrained optimization problems,, Automatica J. IFAC, 29 (1993), 789.  doi: 10.1016/0005-1098(93)90076-6.  Google Scholar

[16]

C. Z. Wu and K. L. Teo, Global impulsive optimal control computation,, Journal of Industrial and Management Optimization, 2 (2006), 435.  doi: 10.3934/jimo.2006.2.435.  Google Scholar

[1]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[2]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[3]

Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021012

[4]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[5]

Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021007

[6]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[7]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[8]

Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021040

[9]

John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026

[10]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009

[11]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[12]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[13]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[14]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[15]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[16]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[17]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[18]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[19]

Lars Grüne, Luca Mechelli, Simon Pirkelmann, Stefan Volkwein. Performance estimates for economic model predictive control and their application in proper orthogonal decomposition-based implementations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021013

[20]

Ziteng Wang, Shu-Cherng Fang, Wenxun Xing. On constraint qualifications: Motivation, design and inter-relations. Journal of Industrial & Management Optimization, 2013, 9 (4) : 983-1001. doi: 10.3934/jimo.2013.9.983

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (107)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]