-
Previous Article
A class of nonlinear impulsive differential equation and optimal controls on time scales
- DCDS-B Home
- This Issue
-
Next Article
An optimal PID controller design for nonlinear constrained optimal control problems
Determination of effective diffusion coefficients of drug delivery devices by a state observer approach
1. | School of Mathematics & Statistics, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia, Australia |
2. | Department of Chemical Engineering, Curtin University of Technology, GPO Box U1987, Perth, WA 6846 |
References:
[1] |
B. Baeumer, L. Chatterjee, P. Hinow, T. Rades, A. Radunskaya and I. Tucker, Predicting the drug release kinetics of matrix tablets,, Discrete and Continuous Dynamical Systems - Series B, 12 (2009), 261.
doi: 10.3934/dcdsb.2009.12.261. |
[2] |
C. Castel, D. Mazens, E. Favre and M. Leonard, Determination of diffusion coefficient from transitory uptake or release kinetics: Incidence of a recirculation loop,, Chemical Engineering Science, 63 (2008), 3564.
doi: 10.1016/j.ces.2008.03.016. |
[3] |
D. Chapelle, P. Moireau and P. L. Tallec, Robust filtering for joint state-parameter estimation in distributed mechanical systems,, Discrete and Continuous Dynamical Systems, 23 (2009), 65.
|
[4] |
D. S. Cohen and T. Erneux, Controlled drug release asymptotics,, SIAM Journal on Applied Mathematics, 58 (1998), 1193.
doi: 10.1137/S0036139995293269. |
[5] |
R. Collins, Mathematical modeling of controlled release from implanted drug-impregnated monoliths,, Pharmaceutical Science & Technology Today, 1 (1998), 269.
doi: 10.1016/S1461-5347(98)00063-7. |
[6] |
O. Corzo and N. Bracho, Determination of water effective diffusion coefficient of sardine sheets during vacuum pulse osmotic dehydration,, LWT, 40 (2007), 1452.
doi: 10.1016/j.lwt.2006.04.008. |
[7] |
G. J. Crawford, C. R. Hicks, X. Lou, S. Vijayasekaran, D. Tan, T. V. Chirila and I. J. Constable, The Chirila keratoprosthesis: Phase I human clinical trials,, Ophthalmology, 109 (2002), 883.
doi: 10.1016/S0161-6420(02)00958-2. |
[8] |
T. E. Dabbous, Adaptive control of nonlinear systems using fuzzy systems,, J. Ind. Manag. Optim., 6 (2010), 861.
doi: 10.3934/jimo.2010.6.861. |
[9] |
M. Dick, M. Gugat and G. Leugering, A strict H1-Lyapunov function and feedback stabilization for the isothermal Euler equations with friction,, Numerical Algebra, 1 (2011), 225. Google Scholar |
[10] |
S. V. Drakunov and V. J. Law, Parameter estimation using sliding mode observers: application to the Monod kinetic model,, Chemical Product and Process Modeling, 2 (2007). Google Scholar |
[11] |
Q. Gong, I. M. Ross and W. Kang, A pseudospectral observer for nonlinear systems,, Discrete and Continuous Dynamical Systems - Series B, 8 (2007), 589.
doi: 10.3934/dcdsb.2007.8.589. |
[12] |
J. Gutenwik, B. Nilsson and A. Axelsson, Determination of protein diffusion coefficients in agarose gel with a diffusion cell,, Biochemical Engineering Journal, 19 (2004), 1.
doi: 10.1016/j.bej.2003.09.004. |
[13] |
C. R. Hicks, G. J. Crawford, X. Lou, T. D. Tan, et al, Cornea replacement using a synthetic hydrogel cornea, AlphaCor: Device, preliminary outcomes and complications,, Eye, 17 (2003), 385.
doi: 10.1038/sj.eye.6700333. |
[14] |
C. R. Hicks, D. Morrison, X. Lou, G. J. Crawford, A. A. Gadjatsy and I. J. Constable, Orbit implants: Potential new directions,, Expert Rev Med Devices, 3 (2006), 805.
doi: 10.1586/17434440.3.6.805. |
[15] |
P. A. Ioannou and J. Sun, "Robust Adaptive Control,", Prentice-Hall, (1995). Google Scholar |
[16] |
O. J. Karlsson, J. M. Stubbs, L. E. Karlsson and D. C. Sundberg, Estimating diffusion coefficients for small molecules in polymers and polymer solutions,, Polymer, 42 (2001), 4915.
doi: 10.1016/S0032-3861(00)00765-5. |
[17] |
X. Lou, S. Munro and S. Wang, Drug release characteristics of phase separation PHEMA sponge materials,, Biomaterials, 25 (2004), 5071.
doi: 10.1016/j.biomaterials.2004.01.058. |
[18] |
X. Lou, S. Wang and S. Y. Tan, Mathematics-aided quantitative analysis of diffusion characteristics of pHEMA sponge hydrogels,, Asia-Pac. J. Chem. Eng., 2 (2007), 609. Google Scholar |
[19] |
K. Nishida, Y. Ando and H. Kawamura, Diffusion coefficients of anticancer drugs and compounds having a similar structure at 30$^\circ$C,, J. Colloid & Polymer Science, 261 (1983), 70.
doi: 10.1007/BF01411520. |
[20] |
M. Perrier, S. Feyo de Azevedo, E. C. Ferreira and D. Dochain, Tuning of observer-based estimators: Theory and application to the on-line estimation of kinetic parameters,, Control Engineering Practice, 8 (2000), 377.
doi: 10.1016/S0967-0661(99)00164-1. |
[21] |
J. T. Rafael, S. M. John, I. E. Jonathan, B. Y. Michael, C. Mark and B. Henry, Interstitial chemotherapy of the 9L gliosarcoma: Controlled release polymers for drug delivery in the brain,, J. Cancer Research, 53 (1993), 329. Google Scholar |
[22] |
H. Sira-Ramirez, On the sliding mode control of nonlinear systems,, Systems & Control letters, 19 (1992), 303.
doi: 10.1016/0167-6911(92)90069-5. |
[23] |
J. D. Temmerman, S. Drakunov, H. Ramon, B. Nicolai and J. Anthonis, Design of an estimator for the prediction of drying curves,, Control Engineering Practice, 17 (2009), 203.
doi: 10.1016/j.conengprac.2008.06.002. |
[24] |
N. Turker and F. Erdogdu, Effects of pH and temperature of extraction medium on effective diffusion coefficient of anthocynanin pigments of black carrot (Daucus carota var. L.),, Journal of Food Engineering, 76 (2006), 579.
doi: 10.1016/j.jfoodeng.2005.06.005. |
[25] |
K. E. Uhrich, S. M. Cannizaro, R. S. Langer and K. M. Shakesheff, Polymeric systems for controlled drug release,, Chem. Rev., 99 (1999), 3181.
doi: 10.1021/cr940351u. |
[26] |
E. A. Veraverbeke, P. Verboven, N. Scheerlinck, M. L. Hoang and B. M. Nicolai, Determination of the diffusion coefficient of tissue, cuticle, cutin and wax of apple,, Journal of Food Engineering, 58 (2003), 285.
doi: 10.1016/S0260-8774(02)00387-4. |
[27] |
S. Wang and X. Lou, An optimization approach to the estimation of effective drug diffusivity: From planar disc into a finite external volume,, J. Ind. Manag. Optim., 5 (2009), 127.
|
[28] |
S. Wang, S. Mohd Mahali, A. McGuiness and X. Lou, Mathematical models for estimating effective diffusion parameters of spherical drug delivery devices,, Theoretical Chemistry Accounts, 125 (2010), 659.
doi: 10.1007/s00214-009-0649-2. |
[29] |
S. Wang and X. Lou, Numerical methods for the estimation of effective diffusion coefficients of 2D controlled drug delivery systems,, Optimization and Engineering, 11 (2010), 611.
doi: 10.1007/s11081-008-9069-8. |
[30] |
N. Wu , L. Wang, D. C. Tan, M. S. Moochhala and Y. Yang, Mathematical modeling and in vitro study of controlled drug release via a highly swellable and dissoluble polymer matrix: Polyethylene oxide with high molecular weights,, Journal of Controlled Release, 102 (2005), 569.
doi: 10.1016/j.jconrel.2004.11.002. |
[31] |
D. E. Wurster, V. Buraphacheep and J. M. Patel, The determination of diffusion coefficients in semisolids by Fourier Transform Infrared (Ft-Ir) Spectroscopy,, Pharmaceutical Research, 10 (1993), 616.
doi: 10.1023/A:1018922724566. |
[32] |
K. Yip, K. Y. Tam and K. F. C. Yiu, An efficient method of calculating diffusion coefficients via eigenfunction expansion,, Journal of Chemical Information and Computer Science, 37 (1997), 367.
doi: 10.1021/ci9604652. |
show all references
References:
[1] |
B. Baeumer, L. Chatterjee, P. Hinow, T. Rades, A. Radunskaya and I. Tucker, Predicting the drug release kinetics of matrix tablets,, Discrete and Continuous Dynamical Systems - Series B, 12 (2009), 261.
doi: 10.3934/dcdsb.2009.12.261. |
[2] |
C. Castel, D. Mazens, E. Favre and M. Leonard, Determination of diffusion coefficient from transitory uptake or release kinetics: Incidence of a recirculation loop,, Chemical Engineering Science, 63 (2008), 3564.
doi: 10.1016/j.ces.2008.03.016. |
[3] |
D. Chapelle, P. Moireau and P. L. Tallec, Robust filtering for joint state-parameter estimation in distributed mechanical systems,, Discrete and Continuous Dynamical Systems, 23 (2009), 65.
|
[4] |
D. S. Cohen and T. Erneux, Controlled drug release asymptotics,, SIAM Journal on Applied Mathematics, 58 (1998), 1193.
doi: 10.1137/S0036139995293269. |
[5] |
R. Collins, Mathematical modeling of controlled release from implanted drug-impregnated monoliths,, Pharmaceutical Science & Technology Today, 1 (1998), 269.
doi: 10.1016/S1461-5347(98)00063-7. |
[6] |
O. Corzo and N. Bracho, Determination of water effective diffusion coefficient of sardine sheets during vacuum pulse osmotic dehydration,, LWT, 40 (2007), 1452.
doi: 10.1016/j.lwt.2006.04.008. |
[7] |
G. J. Crawford, C. R. Hicks, X. Lou, S. Vijayasekaran, D. Tan, T. V. Chirila and I. J. Constable, The Chirila keratoprosthesis: Phase I human clinical trials,, Ophthalmology, 109 (2002), 883.
doi: 10.1016/S0161-6420(02)00958-2. |
[8] |
T. E. Dabbous, Adaptive control of nonlinear systems using fuzzy systems,, J. Ind. Manag. Optim., 6 (2010), 861.
doi: 10.3934/jimo.2010.6.861. |
[9] |
M. Dick, M. Gugat and G. Leugering, A strict H1-Lyapunov function and feedback stabilization for the isothermal Euler equations with friction,, Numerical Algebra, 1 (2011), 225. Google Scholar |
[10] |
S. V. Drakunov and V. J. Law, Parameter estimation using sliding mode observers: application to the Monod kinetic model,, Chemical Product and Process Modeling, 2 (2007). Google Scholar |
[11] |
Q. Gong, I. M. Ross and W. Kang, A pseudospectral observer for nonlinear systems,, Discrete and Continuous Dynamical Systems - Series B, 8 (2007), 589.
doi: 10.3934/dcdsb.2007.8.589. |
[12] |
J. Gutenwik, B. Nilsson and A. Axelsson, Determination of protein diffusion coefficients in agarose gel with a diffusion cell,, Biochemical Engineering Journal, 19 (2004), 1.
doi: 10.1016/j.bej.2003.09.004. |
[13] |
C. R. Hicks, G. J. Crawford, X. Lou, T. D. Tan, et al, Cornea replacement using a synthetic hydrogel cornea, AlphaCor: Device, preliminary outcomes and complications,, Eye, 17 (2003), 385.
doi: 10.1038/sj.eye.6700333. |
[14] |
C. R. Hicks, D. Morrison, X. Lou, G. J. Crawford, A. A. Gadjatsy and I. J. Constable, Orbit implants: Potential new directions,, Expert Rev Med Devices, 3 (2006), 805.
doi: 10.1586/17434440.3.6.805. |
[15] |
P. A. Ioannou and J. Sun, "Robust Adaptive Control,", Prentice-Hall, (1995). Google Scholar |
[16] |
O. J. Karlsson, J. M. Stubbs, L. E. Karlsson and D. C. Sundberg, Estimating diffusion coefficients for small molecules in polymers and polymer solutions,, Polymer, 42 (2001), 4915.
doi: 10.1016/S0032-3861(00)00765-5. |
[17] |
X. Lou, S. Munro and S. Wang, Drug release characteristics of phase separation PHEMA sponge materials,, Biomaterials, 25 (2004), 5071.
doi: 10.1016/j.biomaterials.2004.01.058. |
[18] |
X. Lou, S. Wang and S. Y. Tan, Mathematics-aided quantitative analysis of diffusion characteristics of pHEMA sponge hydrogels,, Asia-Pac. J. Chem. Eng., 2 (2007), 609. Google Scholar |
[19] |
K. Nishida, Y. Ando and H. Kawamura, Diffusion coefficients of anticancer drugs and compounds having a similar structure at 30$^\circ$C,, J. Colloid & Polymer Science, 261 (1983), 70.
doi: 10.1007/BF01411520. |
[20] |
M. Perrier, S. Feyo de Azevedo, E. C. Ferreira and D. Dochain, Tuning of observer-based estimators: Theory and application to the on-line estimation of kinetic parameters,, Control Engineering Practice, 8 (2000), 377.
doi: 10.1016/S0967-0661(99)00164-1. |
[21] |
J. T. Rafael, S. M. John, I. E. Jonathan, B. Y. Michael, C. Mark and B. Henry, Interstitial chemotherapy of the 9L gliosarcoma: Controlled release polymers for drug delivery in the brain,, J. Cancer Research, 53 (1993), 329. Google Scholar |
[22] |
H. Sira-Ramirez, On the sliding mode control of nonlinear systems,, Systems & Control letters, 19 (1992), 303.
doi: 10.1016/0167-6911(92)90069-5. |
[23] |
J. D. Temmerman, S. Drakunov, H. Ramon, B. Nicolai and J. Anthonis, Design of an estimator for the prediction of drying curves,, Control Engineering Practice, 17 (2009), 203.
doi: 10.1016/j.conengprac.2008.06.002. |
[24] |
N. Turker and F. Erdogdu, Effects of pH and temperature of extraction medium on effective diffusion coefficient of anthocynanin pigments of black carrot (Daucus carota var. L.),, Journal of Food Engineering, 76 (2006), 579.
doi: 10.1016/j.jfoodeng.2005.06.005. |
[25] |
K. E. Uhrich, S. M. Cannizaro, R. S. Langer and K. M. Shakesheff, Polymeric systems for controlled drug release,, Chem. Rev., 99 (1999), 3181.
doi: 10.1021/cr940351u. |
[26] |
E. A. Veraverbeke, P. Verboven, N. Scheerlinck, M. L. Hoang and B. M. Nicolai, Determination of the diffusion coefficient of tissue, cuticle, cutin and wax of apple,, Journal of Food Engineering, 58 (2003), 285.
doi: 10.1016/S0260-8774(02)00387-4. |
[27] |
S. Wang and X. Lou, An optimization approach to the estimation of effective drug diffusivity: From planar disc into a finite external volume,, J. Ind. Manag. Optim., 5 (2009), 127.
|
[28] |
S. Wang, S. Mohd Mahali, A. McGuiness and X. Lou, Mathematical models for estimating effective diffusion parameters of spherical drug delivery devices,, Theoretical Chemistry Accounts, 125 (2010), 659.
doi: 10.1007/s00214-009-0649-2. |
[29] |
S. Wang and X. Lou, Numerical methods for the estimation of effective diffusion coefficients of 2D controlled drug delivery systems,, Optimization and Engineering, 11 (2010), 611.
doi: 10.1007/s11081-008-9069-8. |
[30] |
N. Wu , L. Wang, D. C. Tan, M. S. Moochhala and Y. Yang, Mathematical modeling and in vitro study of controlled drug release via a highly swellable and dissoluble polymer matrix: Polyethylene oxide with high molecular weights,, Journal of Controlled Release, 102 (2005), 569.
doi: 10.1016/j.jconrel.2004.11.002. |
[31] |
D. E. Wurster, V. Buraphacheep and J. M. Patel, The determination of diffusion coefficients in semisolids by Fourier Transform Infrared (Ft-Ir) Spectroscopy,, Pharmaceutical Research, 10 (1993), 616.
doi: 10.1023/A:1018922724566. |
[32] |
K. Yip, K. Y. Tam and K. F. C. Yiu, An efficient method of calculating diffusion coefficients via eigenfunction expansion,, Journal of Chemical Information and Computer Science, 37 (1997), 367.
doi: 10.1021/ci9604652. |
[1] |
Shalela Mohd--Mahali, Song Wang, Xia Lou, Sungging Pintowantoro. Numerical methods for estimating effective diffusion coefficients of three-dimensional drug delivery systems. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 377-393. doi: 10.3934/naco.2012.2.377 |
[2] |
Mario Grassi, Giuseppe Pontrelli, Luciano Teresi, Gabriele Grassi, Lorenzo Comel, Alessio Ferluga, Luigi Galasso. Novel design of drug delivery in stented arteries: A numerical comparative study. Mathematical Biosciences & Engineering, 2009, 6 (3) : 493-508. doi: 10.3934/mbe.2009.6.493 |
[3] |
Dinh Cong Huong, Mai Viet Thuan. State transformations of time-varying delay systems and their applications to state observer design. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 413-444. doi: 10.3934/dcdss.2017020 |
[4] |
Guangbin CAI, Yang Zhao, Wanzhen Quan, Xiusheng Zhang. Design of LPV fault-tolerant controller for hypersonic vehicle based on state observer. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019120 |
[5] |
Andrzej Swierniak, Jaroslaw Smieja. Analysis and Optimization of Drug Resistant an Phase-Specific Cancer. Mathematical Biosciences & Engineering, 2005, 2 (3) : 657-670. doi: 10.3934/mbe.2005.2.657 |
[6] |
Vladimir V. Chepyzhov, Mark I. Vishik. Trajectory attractor for reaction-diffusion system with diffusion coefficient vanishing in time. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1493-1509. doi: 10.3934/dcds.2010.27.1493 |
[7] |
Imre Csiszar and Paul C. Shields. Consistency of the BIC order estimator. Electronic Research Announcements, 1999, 5: 123-127. |
[8] |
Nicolas Bacaër, Cheikh Sokhna. A reaction-diffusion system modeling the spread of resistance to an antimalarial drug. Mathematical Biosciences & Engineering, 2005, 2 (2) : 227-238. doi: 10.3934/mbe.2005.2.227 |
[9] |
Zhidong Zhang. An undetermined time-dependent coefficient in a fractional diffusion equation. Inverse Problems & Imaging, 2017, 11 (5) : 875-900. doi: 10.3934/ipi.2017041 |
[10] |
Bastian Harrach. Simultaneous determination of the diffusion and absorption coefficient from boundary data. Inverse Problems & Imaging, 2012, 6 (4) : 663-679. doi: 10.3934/ipi.2012.6.663 |
[11] |
Elena Beretta, Cecilia Cavaterra. Identifying a space dependent coefficient in a reaction-diffusion equation. Inverse Problems & Imaging, 2011, 5 (2) : 285-296. doi: 10.3934/ipi.2011.5.285 |
[12] |
Giovany M. Figueiredo, Tarcyana S. Figueiredo-Sousa, Cristian Morales-Rodrigo, Antonio Suárez. Existence of positive solutions of an elliptic equation with local and nonlocal variable diffusion coefficient. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3689-3711. doi: 10.3934/dcdsb.2018311 |
[13] |
Song Wang, Xia Lou. An optimization approach to the estimation of effective drug diffusivity: From a planar disc into a finite external volume. Journal of Industrial & Management Optimization, 2009, 5 (1) : 127-140. doi: 10.3934/jimo.2009.5.127 |
[14] |
Karl Peter Hadeler. Structured populations with diffusion in state space. Mathematical Biosciences & Engineering, 2010, 7 (1) : 37-49. doi: 10.3934/mbe.2010.7.37 |
[15] |
Qi Gong, I. Michael Ross, Wei Kang. A pseudospectral observer for nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 589-611. doi: 10.3934/dcdsb.2007.8.589 |
[16] |
Yunmei Chen, Weihong Guo, Qingguo Zeng, Yijun Liu. A nonstandard smoothing in reconstruction of apparent diffusion coefficient profiles from diffusion weighted images. Inverse Problems & Imaging, 2008, 2 (2) : 205-224. doi: 10.3934/ipi.2008.2.205 |
[17] |
Elie Bretin, Imen Mekkaoui, Jérôme Pousin. Assessment of the effect of tissue motion in diffusion MRI: Derivation of new apparent diffusion coefficient formula. Inverse Problems & Imaging, 2018, 12 (1) : 125-152. doi: 10.3934/ipi.2018005 |
[18] |
Thomas Lepoutre, Salomé Martínez. Steady state analysis for a relaxed cross diffusion model. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 613-633. doi: 10.3934/dcds.2014.34.613 |
[19] |
Jing Liu, Xiaodong Liu, Sining Zheng, Yanping Lin. Positive steady state of a food chain system with diffusion. Conference Publications, 2007, 2007 (Special) : 667-676. doi: 10.3934/proc.2007.2007.667 |
[20] |
Thuy N. T. Nguyen. Carleman estimates for semi-discrete parabolic operators with a discontinuous diffusion coefficient and applications to controllability. Mathematical Control & Related Fields, 2014, 4 (2) : 203-259. doi: 10.3934/mcrf.2014.4.203 |
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]