• Previous Article
    A spectral PRP conjugate gradient methods for nonconvex optimization problem based on modified line search
  • DCDS-B Home
  • This Issue
  • Next Article
    Determination of effective diffusion coefficients of drug delivery devices by a state observer approach
November  2011, 16(4): 1137-1155. doi: 10.3934/dcdsb.2011.16.1137

A class of nonlinear impulsive differential equation and optimal controls on time scales

1. 

Department of Mathematics, Guizhou University, Guiyang, Guizhou 550025

2. 

Department of Mathematics, Guizhou University, Guiyang, Guizhou, 550025

Received  October 2010 Revised  March 2011 Published  August 2011

This paper is mainly concerned with a class of optimal control problems of systems governed by the nonlinear impulsive differential equation on time scale. The reasonable weak solution of nonlinear impulsive differential equation on time scale is introduced and the existence and uniqueness of the weak solution and its properties are presented. By $L^{1}-$strong$-$weak lower semicontinuity of integral functional on time scale, we give the existence of optimal controls. Using integration by parts formula on time scale, the necessary conditions of optimality are derived. An example on mathematical programming is also presented for demonstration.
Citation: Yunfei Peng, X. Xiang. A class of nonlinear impulsive differential equation and optimal controls on time scales. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1137-1155. doi: 10.3934/dcdsb.2011.16.1137
References:
[1]

M. U. Akhmet and M. Turan, The differential equations on time scales through impulsive differential equations,, Nonlinear Analysis, 65 (2006), 2043.  doi: 10.1016/j.na.2005.12.042.  Google Scholar

[2]

M. Benchohra, J. Henderson and S. Ntouyas, "Impulsive Differential Equations and Inclusion,", Contemporary Mathematics and its Applications, 2 (2006).   Google Scholar

[3]

Rui A. C. Ferreira and Delfim F. M. Torres, Higher-order calculus of variations on time scales,, in, (2008), 149.   Google Scholar

[4]

P. Gajardo, H. Ramirez and A. Rapaport, Minimal time sequential Banach reactors with bounded and impulse controls for one or more species,, SIAM J. Control Optim., 47 (2008), 2827.  doi: 10.1137/070695204.  Google Scholar

[5]

Y. Gong and X. Xiang, A class of optimal control problems of systems governed by the first order linear dynamic equations on time scales,, J. Industrial and Management Optimization, 5 (2009), 1.   Google Scholar

[6]

S. Hu and N. S. Papageorgiou, "Handbook of Multivalued Analysis. Vol. I. Theory," Mathematics and its Applications, 419,, Kluwer Academic Publishers, (1997).   Google Scholar

[7]

Roman Hilscher and Vera Zeidan, Weak maximum principle and accessory problem for control problems on time scales,, Nonlinear Analysis, 70 (2009), 3209.  doi: 10.1016/j.na.2008.04.025.  Google Scholar

[8]

V. Lakshmikantham and S. Sivasundaram, B. Kaymakcalan, "Dynamical Systems on Measure Chains,'', Kluwer Acadamic Publishers, (1996).   Google Scholar

[9]

G. Liu, X. Xiang and Y. Peng, Nonlinear integro-differential equation and optimal controls on time scales,, Computers and Mathematics with Applications, 61 (2011), 155.  doi: 10.1016/j.camwa.2010.10.013.  Google Scholar

[10]

H. Liu and X. Xiang, A class of the first order impulsive dynamic equations on time scales,, Nonlinear Analysis, 69 (2008), 2803.  doi: 10.1016/j.na.2007.08.052.  Google Scholar

[11]

Yajun Ma and Jitao Sun, Uniform eventual Lipschitz stability of impulsive systems on time scales,, Applied Mathematics and Computation, 211 (2009), 246.  doi: 10.1016/j.amc.2009.01.033.  Google Scholar

[12]

Agnieszka B. Malinowska and Delfim F. M. Torres, Strong minimizers of the calculus of variations on time scales and the Weierstrass condition,, Proceedings of the Estonian Academy of Sciences, 58 (2009), 205.  doi: 10.3176/proc.2009.4.02.  Google Scholar

[13]

Agnieszka B. Malinowska and Delfim F. M. Torres, Leitmann's direct method of optimization for absolute extrema of certain problems of the calculus of variations on time scales,, Applied Mathematics and Computation, 217 (2010), 1158.  doi: 10.1016/j.amc.2010.01.015.  Google Scholar

[14]

Y. Peng and X. Xiang, Second order nonlinear impulsive time-variant systems with unbounded perturbation and optimal controls,, J. Industrial and Management Optimization, 4 (2008), 17.   Google Scholar

[15]

Y. Peng, X. Xiang, Y. Gong and G. Liu, Necessary conditions of optimality for a class of optimal control problems on time scales,, Computers and Mathematics with Applications, 58 (2009), 2035.  doi: 10.1016/j.camwa.2009.08.032.  Google Scholar

[16]

Y. Peng, X. Xiang and Yang Jiang, Nonliear dynaminc systems and optimal control problems on time scales,, ESAIM Control, 17 (2011), 654.  doi: 10.1051/cocv/2010022.  Google Scholar

[17]

E. Zeidler, "Nonlinear Functional Analysis and Its Applications III, Variational Methods and Optimization,", Springer-Verlag, (1985).   Google Scholar

[18]

Z. Zhan and W. Wei, On existence of optimal control governed by a class of the first-order linear dynamic systems on time scales,, Applied Mathematics and Computation, 215 (2009), 2070.  doi: 10.1016/j.amc.2009.08.009.  Google Scholar

[19]

Z. Zhan and W. Wei, Necessary conditions for a class of optimal control problems on time scales,, Abstract and Applied Analysis, 2009 (9743).   Google Scholar

show all references

References:
[1]

M. U. Akhmet and M. Turan, The differential equations on time scales through impulsive differential equations,, Nonlinear Analysis, 65 (2006), 2043.  doi: 10.1016/j.na.2005.12.042.  Google Scholar

[2]

M. Benchohra, J. Henderson and S. Ntouyas, "Impulsive Differential Equations and Inclusion,", Contemporary Mathematics and its Applications, 2 (2006).   Google Scholar

[3]

Rui A. C. Ferreira and Delfim F. M. Torres, Higher-order calculus of variations on time scales,, in, (2008), 149.   Google Scholar

[4]

P. Gajardo, H. Ramirez and A. Rapaport, Minimal time sequential Banach reactors with bounded and impulse controls for one or more species,, SIAM J. Control Optim., 47 (2008), 2827.  doi: 10.1137/070695204.  Google Scholar

[5]

Y. Gong and X. Xiang, A class of optimal control problems of systems governed by the first order linear dynamic equations on time scales,, J. Industrial and Management Optimization, 5 (2009), 1.   Google Scholar

[6]

S. Hu and N. S. Papageorgiou, "Handbook of Multivalued Analysis. Vol. I. Theory," Mathematics and its Applications, 419,, Kluwer Academic Publishers, (1997).   Google Scholar

[7]

Roman Hilscher and Vera Zeidan, Weak maximum principle and accessory problem for control problems on time scales,, Nonlinear Analysis, 70 (2009), 3209.  doi: 10.1016/j.na.2008.04.025.  Google Scholar

[8]

V. Lakshmikantham and S. Sivasundaram, B. Kaymakcalan, "Dynamical Systems on Measure Chains,'', Kluwer Acadamic Publishers, (1996).   Google Scholar

[9]

G. Liu, X. Xiang and Y. Peng, Nonlinear integro-differential equation and optimal controls on time scales,, Computers and Mathematics with Applications, 61 (2011), 155.  doi: 10.1016/j.camwa.2010.10.013.  Google Scholar

[10]

H. Liu and X. Xiang, A class of the first order impulsive dynamic equations on time scales,, Nonlinear Analysis, 69 (2008), 2803.  doi: 10.1016/j.na.2007.08.052.  Google Scholar

[11]

Yajun Ma and Jitao Sun, Uniform eventual Lipschitz stability of impulsive systems on time scales,, Applied Mathematics and Computation, 211 (2009), 246.  doi: 10.1016/j.amc.2009.01.033.  Google Scholar

[12]

Agnieszka B. Malinowska and Delfim F. M. Torres, Strong minimizers of the calculus of variations on time scales and the Weierstrass condition,, Proceedings of the Estonian Academy of Sciences, 58 (2009), 205.  doi: 10.3176/proc.2009.4.02.  Google Scholar

[13]

Agnieszka B. Malinowska and Delfim F. M. Torres, Leitmann's direct method of optimization for absolute extrema of certain problems of the calculus of variations on time scales,, Applied Mathematics and Computation, 217 (2010), 1158.  doi: 10.1016/j.amc.2010.01.015.  Google Scholar

[14]

Y. Peng and X. Xiang, Second order nonlinear impulsive time-variant systems with unbounded perturbation and optimal controls,, J. Industrial and Management Optimization, 4 (2008), 17.   Google Scholar

[15]

Y. Peng, X. Xiang, Y. Gong and G. Liu, Necessary conditions of optimality for a class of optimal control problems on time scales,, Computers and Mathematics with Applications, 58 (2009), 2035.  doi: 10.1016/j.camwa.2009.08.032.  Google Scholar

[16]

Y. Peng, X. Xiang and Yang Jiang, Nonliear dynaminc systems and optimal control problems on time scales,, ESAIM Control, 17 (2011), 654.  doi: 10.1051/cocv/2010022.  Google Scholar

[17]

E. Zeidler, "Nonlinear Functional Analysis and Its Applications III, Variational Methods and Optimization,", Springer-Verlag, (1985).   Google Scholar

[18]

Z. Zhan and W. Wei, On existence of optimal control governed by a class of the first-order linear dynamic systems on time scales,, Applied Mathematics and Computation, 215 (2009), 2070.  doi: 10.1016/j.amc.2009.08.009.  Google Scholar

[19]

Z. Zhan and W. Wei, Necessary conditions for a class of optimal control problems on time scales,, Abstract and Applied Analysis, 2009 (9743).   Google Scholar

[1]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[2]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[3]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[4]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[5]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[6]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[7]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[8]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[9]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[10]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020271

[11]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[12]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[13]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[14]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[15]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[16]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[17]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[18]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[19]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[20]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (144)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]