Citation: |
[1] |
N. Andrei, Numerical comparison of conjugate gradient algorithms for unconstrained optimization, Studies in Informatics and Control, 16 (2007), 333-352. |
[2] |
N. Andrei, Acceleration of conjugate gradient algorithms for unconstrained optimization, Applied Mathematics and Computation, 213 (2009), 361-369.doi: 10.1016/j.amc.2009.03.020. |
[3] |
N. Andrei, Open problems in conjugate gradient algorithms for unconstrained optimization, Bulletin of the Malaysian Mathematical Sciences Society, accepted, 2011. |
[4] |
A. Antoniou and W. S. Lu, "Practical Optimization: Algorithms and Engineering Applications,'' Springer, New York, 2007. |
[5] |
E. Birgin and J. M. Martínez, A spectral conjugate gradient method for unconstrained optimization, Appl. Math. Optim., 43 (2001), 117-128.doi: 10.1007/s00245-001-0003-0. |
[6] |
E. Feireisl, F. Issard-Roch and H. Petzeltová, Long-time behaviour and convergence towards equilibria for a conserved phase field model. Partial differential equations and applications, Discrete Contin. Dyn. Syst., 10 (2004), 239-252. |
[7] |
J. C. Gilbert and J. Nocedal, Global convergence properties of conjugate gradient methods for optimization, SIAM J. Optim., 2 (1992), 21-42.doi: 10.1137/0802003. |
[8] |
L. Grippo and S. Lucidi, A globally convergent version of the Polak-Ribière conjugate gradient method, Math. Prog., 78 (1997), 375-391.doi: 10.1007/BF02614362. |
[9] |
M. Gunzburger, S. D. Yang and W. X. Zhu, Analysis and discretization of an optimal control problem for the forced Fisher equation, Discrete and Continuous Dynamical Systems-Series B, 8 (2007), 569-587.doi: 10.3934/dcdsb.2007.8.569. |
[10] |
W. W. Hager and H. C. Zhang, A survey of nonlinear conjugate gradient methods, Pracific J Optim., 2 (2006), 35-58. |
[11] |
Z. Huang and S. Li, Guaranteed descent conjugate gradient methods with modified secant condition, J. Industrial and Management Optim., 4 (2008), 739-755.doi: 10.3934/jimo.2008.4.739. |
[12] |
G. Li, L. Guan and G. Yu, Global convergence of modified Polak-Ribière-Polyak conjugate gradient methods with sufficient descent property, J. Industrial and Management Optim., 4 (2008), 565-579.doi: 10.3934/jimo.2008.4.565. |
[13] |
J. Nocedal and J. S. Wright, "Numerical Optimization,'' Springer Series in Operations Research, Springer-Verlag, New York, 1999.doi: 10.1007/b98874. |
[14] |
E. Polak and G. Ribiére, Note sur la convergence de méthodes de directions conjuguées, Rev. Française Infomat. Recherche Opérationnelle, 3 (1969), 35-43. |
[15] |
B. T. Polyak, The conjugate gradient method in extreme problems, USSR Comput. Math. Math. Phys., 9 (1969), 94-112.doi: 10.1016/0041-5553(69)90035-4. |
[16] |
M. J. D. Powell, Restart procedures of the conjugate gradient method, Math. Program., 12 (1977), 241-254.doi: 10.1007/BF01593790. |
[17] |
M. J. D. Powell, Nonconvex minimization calculations and the conjugate gradient method, in "Numerical Anaysis" (Dundee, 1983), Lecture Notes in Mathematics, 1066, Springer, Berlin, (1984), 122-141. |
[18] |
Z. J. Shi and J. Shen, Convergence of the Polak-Ribiére-Polyak conjugate gradient method, Nonlinear Analysis, 66 (2007), 1428-1441.doi: 10.1016/j.na.2006.02.001. |
[19] |
J. Sun and J. P. Zhang, Global convergence of conjugate gradient methods without line search, Annals of Operations Research, 103 (2001), 161-173.doi: 10.1023/A:1012903105391. |
[20] |
Z. Wan, X. D. Zheng and Y. Y. Fei, Hybrid Armijo-Wolfe line search strategy and its applications in newton method for unconstrained optimization, working paper, 2010. |
[21] |
Z. Wan, Z. L. Yang and Y. L. Wang, New spectral PRP conjugate gradient method for unconstrained optimization, Appl. Math. Letter, 24 (2011), 16-22.doi: 10.1016/j.aml.2010.08.002. |
[22] |
C. Wang, Y. Chen and S. Du, Further insight into the Shamanskii modification of Newton method, Appl. Math. Comput., 180 (2006), 46-52.doi: 10.1016/j.amc.2005.11.167. |
[23] |
G. H. Yu, L. T. Guan and Z. X. Wei, Globally convergent Polak-Ribiére-Polyak conjugate gradient methods under a modified Wolfe line search, Applied Mathematics and Computation, 215 (2009), 3082-3090. |
[24] |
G. L. Yuan, X. W. Lu and Z. X. Wei, A conjugate gradient method with descent direction for unconstrained optimization, Journal of Computational and Applied Mathematics, 233 (2009), 519-530.doi: 10.1016/j.cam.2009.08.001. |
[25] |
L. Zhang, W. J. Zhou and D. H. Li, Global convergence of a modified Fletcher-Reeves conjugate gradient method with Armijo-type line search, Numer. Math., 104 (2006), 561-572.doi: 10.1007/s00211-006-0028-z. |
[26] |
L. Zhang, W. J. Zhou and D. H. Li, A descent modified Polak-Ribière-Polyak conjugate gradient method and its global convergence, IMA J. Numer. Anal., 26 (2006), 629-640.doi: 10.1093/imanum/drl016. |