• Previous Article
    Stabilization of discrete-time Markovian jump systems with partially unknown transition probabilities
  • DCDS-B Home
  • This Issue
  • Next Article
    Numerical simulation of two-fluid flow and meniscus interface movement in the electromagnetic continuous steel casting process
November  2011, 16(4): 1185-1195. doi: 10.3934/dcdsb.2011.16.1185

Necessary and sufficient conditions for stability of impulsive switched linear systems

1. 

Department of Mathematics and Statistics, Curtin University of Technology, Perth, WA 6845

2. 

Department of Mathematics and Statistics, Curtin University of Technology, GPO Box U 1987, Perth, W.A. 6845

3. 

School of Information Science and Engineering, Central South University, Changsha, 410083, China

Received  October 2010 Revised  June 2011 Published  August 2011

This paper addresses fundamental stability problems of impulsive switched linear systems, featuring given impulsive switching time intervals and switching rules. First, based on the state dynamical behaviors, we construct a new state transition-like matrix, called an impulsive-type state transition (IST) matrix. Then, based on the IST matrix and Lyapunov stability theory, necessary and sufficient conditions for the uniform stability, uniform asymptotic stability, and exponential stability of impulsive switched linear systems are established. These stability conditions require the testing on the IST matrix of the impulsive switched linear systems. The results can be reduced to those for switched linear systems without impulsive effects, and also to those for impulsive linear systems without switchings.
Citation: Honglei Xu, Kok Lay Teo, Weihua Gui. Necessary and sufficient conditions for stability of impulsive switched linear systems. Discrete and Continuous Dynamical Systems - B, 2011, 16 (4) : 1185-1195. doi: 10.3934/dcdsb.2011.16.1185
References:
[1]

F. H. F. Leung, P. K. S. Tam and C. K. Li, The control of switching DC-DC converters - a general LWR problem, Industrial Electronics, IEEE Transactions on, 38 (1991), 65-71.

[2]

Z. Doulgeri and G. Iliadis, Stability of a contact task for a robotic arm modelled as a switched system, Control Theory & Applications, IET, 1 (2007), 844-853. doi: 10.1049/iet-cta:20060191.

[3]

M. Petreczky, Reachability of linear switched systems: Differential geometric approach, Systems & Control Letters, 55 (2006), 112-118. doi: 10.1016/j.sysconle.2005.06.001.

[4]

Z. Sun and S. S. Ge, Analysis and synthesis of switched linear control systems, Automatica J. IFAC, 41 (2005), 181-195. doi: 10.1016/j.automatica.2004.09.015.

[5]

Z. Sun, S. S. Ge and T. H. Lee, Controllability and reachability criteria for switched linear systems, Automatica J. IFAC, 38 (2002), 775-786. doi: 10.1016/S0005-1098(01)00267-9.

[6]

G. Xie and L. Wang, Controllability and stabilizability of switched linear systems, Systems & Control Letters, 48 (2003), 135-155. doi: 10.1016/S0167-6911(02)00288-8.

[7]

J. Ezzine and A. H. Haddad, Controllability and observability of hybrid systems, International Journal of Control, 49 (1989), 2045-2055.

[8]

J. Daafouz, P. Riedinger and C. Iung, Stability analysis and control synthesis for switched systems: A switched Lyapunov function approach, IEEE Transactions on Automatic Control, 47 (2002), 1883-1887. doi: 10.1109/TAC.2002.804474.

[9]

R. A. Decarlo, M. S. Branicky, S. Pettersson and B. Lennartson, Perspectives and results on the stability and stabilizability of hybrid systems, Proceedings of the IEEE, 88 (2000), 1069-1082. doi: 10.1109/5.871309.

[10]

L. Hai and P. J. Antsaklis, Stability and stabilizability of switched linear systems: A survey of recent results, IEEE Transactions on Automatic Control, 54 (2009), 308-322. doi: 10.1109/TAC.2008.2012009.

[11]

D. Liberzon, "Switching in Systems and Control," Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 2003.

[12]

H. Xu, X. Liu and K. L. Teo, Delay independent stability criteria of impulsive switched systems with time-invariant delays, Mathematical and Computer Modelling, 47 (2008), 372-379. doi: 10.1016/j.mcm.2007.04.011.

[13]

H. Xu, K. L. Teo and X. Liu, Robust stability analysis of guaranteed cost control for impulsive switched systems, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 38 (2008), 1419-1422. doi: 10.1109/TSMCB.2008.925747.

[14]

D. Zheng, "Linear System Theory," Tsinghua University Press, Beijing, 1990.

[15]

Z. Sun and S. S. Ge, "Switched Linear Systems," Springer-Verlag, London, 2005.

[16]

Q. Lu and G. Jiang, The dynamics of a prey-predator model with impulsive state feedback control, Discrete and Continuous Dynamical Systems - Series B, 6 (2006), 1301-1320. doi: 10.3934/dcdsb.2006.6.1301.

[17]

A. Anguraj and T. Paul, Existence and uniqueness of nonlinear impulsive integro-differential equations, Discrete and Continuous Dynamical Systems - Series B, 6 (2006), 1191-1198. doi: 10.3934/dcdsb.2006.6.1191.

show all references

References:
[1]

F. H. F. Leung, P. K. S. Tam and C. K. Li, The control of switching DC-DC converters - a general LWR problem, Industrial Electronics, IEEE Transactions on, 38 (1991), 65-71.

[2]

Z. Doulgeri and G. Iliadis, Stability of a contact task for a robotic arm modelled as a switched system, Control Theory & Applications, IET, 1 (2007), 844-853. doi: 10.1049/iet-cta:20060191.

[3]

M. Petreczky, Reachability of linear switched systems: Differential geometric approach, Systems & Control Letters, 55 (2006), 112-118. doi: 10.1016/j.sysconle.2005.06.001.

[4]

Z. Sun and S. S. Ge, Analysis and synthesis of switched linear control systems, Automatica J. IFAC, 41 (2005), 181-195. doi: 10.1016/j.automatica.2004.09.015.

[5]

Z. Sun, S. S. Ge and T. H. Lee, Controllability and reachability criteria for switched linear systems, Automatica J. IFAC, 38 (2002), 775-786. doi: 10.1016/S0005-1098(01)00267-9.

[6]

G. Xie and L. Wang, Controllability and stabilizability of switched linear systems, Systems & Control Letters, 48 (2003), 135-155. doi: 10.1016/S0167-6911(02)00288-8.

[7]

J. Ezzine and A. H. Haddad, Controllability and observability of hybrid systems, International Journal of Control, 49 (1989), 2045-2055.

[8]

J. Daafouz, P. Riedinger and C. Iung, Stability analysis and control synthesis for switched systems: A switched Lyapunov function approach, IEEE Transactions on Automatic Control, 47 (2002), 1883-1887. doi: 10.1109/TAC.2002.804474.

[9]

R. A. Decarlo, M. S. Branicky, S. Pettersson and B. Lennartson, Perspectives and results on the stability and stabilizability of hybrid systems, Proceedings of the IEEE, 88 (2000), 1069-1082. doi: 10.1109/5.871309.

[10]

L. Hai and P. J. Antsaklis, Stability and stabilizability of switched linear systems: A survey of recent results, IEEE Transactions on Automatic Control, 54 (2009), 308-322. doi: 10.1109/TAC.2008.2012009.

[11]

D. Liberzon, "Switching in Systems and Control," Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 2003.

[12]

H. Xu, X. Liu and K. L. Teo, Delay independent stability criteria of impulsive switched systems with time-invariant delays, Mathematical and Computer Modelling, 47 (2008), 372-379. doi: 10.1016/j.mcm.2007.04.011.

[13]

H. Xu, K. L. Teo and X. Liu, Robust stability analysis of guaranteed cost control for impulsive switched systems, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 38 (2008), 1419-1422. doi: 10.1109/TSMCB.2008.925747.

[14]

D. Zheng, "Linear System Theory," Tsinghua University Press, Beijing, 1990.

[15]

Z. Sun and S. S. Ge, "Switched Linear Systems," Springer-Verlag, London, 2005.

[16]

Q. Lu and G. Jiang, The dynamics of a prey-predator model with impulsive state feedback control, Discrete and Continuous Dynamical Systems - Series B, 6 (2006), 1301-1320. doi: 10.3934/dcdsb.2006.6.1301.

[17]

A. Anguraj and T. Paul, Existence and uniqueness of nonlinear impulsive integro-differential equations, Discrete and Continuous Dynamical Systems - Series B, 6 (2006), 1191-1198. doi: 10.3934/dcdsb.2006.6.1191.

[1]

Elena K. Kostousova. State estimation for linear impulsive differential systems through polyhedral techniques. Conference Publications, 2009, 2009 (Special) : 466-475. doi: 10.3934/proc.2009.2009.466

[2]

Ugo Boscain, Grégoire Charlot, Mario Sigalotti. Stability of planar nonlinear switched systems. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 415-432. doi: 10.3934/dcds.2006.15.415

[3]

Philippe Jouan, Said Naciri. Asymptotic stability of uniformly bounded nonlinear switched systems. Mathematical Control and Related Fields, 2013, 3 (3) : 323-345. doi: 10.3934/mcrf.2013.3.323

[4]

Moussa Balde, Ugo Boscain. Stability of planar switched systems: The nondiagonalizable case. Communications on Pure and Applied Analysis, 2008, 7 (1) : 1-21. doi: 10.3934/cpaa.2008.7.1

[5]

Baskar Sundaravadivoo. Controllability analysis of nonlinear fractional order differential systems with state delay and non-instantaneous impulsive effects. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2561-2573. doi: 10.3934/dcdss.2020138

[6]

Alexander Pimenov, Dmitrii I. Rachinskii. Linear stability analysis of systems with Preisach memory. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 997-1018. doi: 10.3934/dcdsb.2009.11.997

[7]

Xiang Xie, Honglei Xu, Xinming Cheng, Yilun Yu. Improved results on exponential stability of discrete-time switched delay systems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (1) : 199-208. doi: 10.3934/dcdsb.2017010

[8]

Michael Basin, Pablo Rodriguez-Ramirez. An optimal impulsive control regulator for linear systems. Numerical Algebra, Control and Optimization, 2011, 1 (2) : 275-282. doi: 10.3934/naco.2011.1.275

[9]

Xueyan Yang, Xiaodi Li, Qiang Xi, Peiyong Duan. Review of stability and stabilization for impulsive delayed systems. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1495-1515. doi: 10.3934/mbe.2018069

[10]

Lin Du, Yun Zhang. $\mathcal{H}_∞$ filtering for switched nonlinear systems: A state projection method. Journal of Industrial and Management Optimization, 2018, 14 (1) : 19-33. doi: 10.3934/jimo.2017035

[11]

K. Aruna Sakthi, A. Vinodkumar. Stabilization on input time-varying delay for linear switched systems with truncated predictor control. Numerical Algebra, Control and Optimization, 2020, 10 (2) : 237-247. doi: 10.3934/naco.2019050

[12]

Hongyan Yan, Yun Sun, Yuanguo Zhu. A linear-quadratic control problem of uncertain discrete-time switched systems. Journal of Industrial and Management Optimization, 2017, 13 (1) : 267-282. doi: 10.3934/jimo.2016016

[13]

Xiaojun Zhou, Chunhua Yang, Weihua Gui. State transition algorithm. Journal of Industrial and Management Optimization, 2012, 8 (4) : 1039-1056. doi: 10.3934/jimo.2012.8.1039

[14]

Peter Howard, Bongsuk Kwon. Spectral analysis for transition front solutions in Cahn-Hilliard systems. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 125-166. doi: 10.3934/dcds.2012.32.125

[15]

Everaldo de Mello Bonotto, Daniela Paula Demuner. Stability and forward attractors for non-autonomous impulsive semidynamical systems. Communications on Pure and Applied Analysis, 2020, 19 (4) : 1979-1996. doi: 10.3934/cpaa.2020087

[16]

Xinyi He, Jianlong Qiu, Xiaodi Li, Jinde Cao. A brief survey on stability and stabilization of impulsive systems with delayed impulses. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1797-1821. doi: 10.3934/dcdss.2022080

[17]

Stepan Sorokin, Maxim Staritsyn. Feedback necessary optimality conditions for a class of terminally constrained state-linear variational problems inspired by impulsive control. Numerical Algebra, Control and Optimization, 2017, 7 (2) : 201-210. doi: 10.3934/naco.2017014

[18]

Evelyn Buckwar, Girolama Notarangelo. A note on the analysis of asymptotic mean-square stability properties for systems of linear stochastic delay differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1521-1531. doi: 10.3934/dcdsb.2013.18.1521

[19]

Daniel Alpay, Eduard Tsekanovskiĭ. Subclasses of Herglotz-Nevanlinna matrix-valued functtons and linear systems. Conference Publications, 2001, 2001 (Special) : 1-13. doi: 10.3934/proc.2001.2001.1

[20]

Canghua Jiang, Kok Lay Teo, Ryan Loxton, Guang-Ren Duan. A neighboring extremal solution for an optimal switched impulsive control problem. Journal of Industrial and Management Optimization, 2012, 8 (3) : 591-609. doi: 10.3934/jimo.2012.8.591

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (104)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]