July  2011, 16(1): 15-29. doi: 10.3934/dcdsb.2011.16.15

Sharp interface limit of the Fisher-KPP equation when initial data have slow exponential decay

1. 

I3M, Université de Montpellier 2, CC051, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France

2. 

UMR CNRS 5251 IMB and INRIA Bordeaux Sud-Ouest ANUBIS, Université de Bordeaux, 3, Place de la Victoire, 33000 Bordeaux, France

Received  March 2010 Revised  January 2011 Published  April 2011

We investigate the singular limit, as $\varepsilon \to 0$, of the Fisher equation $\partial _t u=\varepsilon \Delta u + \varepsilon ^{-1}u(1-u)$ in the whole space. We consider initial data with compact support plus perturbations with slow exponential decay, therefore completing the analysis presented in [1]. We prove that the sharp interface limit moves with a constant speed depending dramatically on the tails of the initial data. We make a thorough analysis of both the generation and motion of interface, thus providing a new estimate of the thickness of the transition layers.
Citation: Matthieu Alfaro, Arnaud Ducrot. Sharp interface limit of the Fisher-KPP equation when initial data have slow exponential decay. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 15-29. doi: 10.3934/dcdsb.2011.16.15
References:
[1]

M. Alfaro and A. Ducrot, Sharp interface limit of the Fisher-KPP equation,, to appear in Comm. Pure Appl. Anal., ().

[2]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation,, Partial differential equations and related topics (Program, 446 (1974), 5.

[3]

G. Barles, L. C. Evans and P. E. Souganidis, Wavefront propagation for reaction-diffusion systems of PDE,, Duke Math. J., 61 (1990), 835. doi: 10.1215/S0012-7094-90-06132-0.

[4]

G. Barles and P. E. Souganidis, A remark on the asymptotic behavior of the solution of the KPP equation,, C. R. Acad. Sci. Paris S\'erie I, 319 (1994), 679.

[5]

M. Bramson, Convergence of solutions of the Kolmogorov equation to travelling waves,, Mem. Amer. Math. Soc., 44 (1983).

[6]

X. Chen, Generation and propagation of interfaces for reaction-diffusion equations,, J. Differential equations, 96 (1992), 116. doi: 10.1016/0022-0396(92)90146-E.

[7]

L. C. Evans and P. E. Souganidis, A PDE approach to geometric optics for certain semilinear parabolic equations,, Indiana Univ. Math. J., 38 (1989), 141. doi: 10.1512/iumj.1989.38.38007.

[8]

R. A. Fisher, The wave of advance of advantageous genes,, Ann. of Eugenics, 7 (1937), 355. doi: 10.1111/j.1469-1809.1937.tb02153.x.

[9]

M. I. Freidlin, Limit theorems for large deviations and reaction-diffusion equations,, Ann. Probab., 13 (1985), 639. doi: 10.1214/aop/1176992901.

[10]

F. Hamel and L. Roques, Fast propagation for KPP equations with slowly decaying initial conditions,, J. Differential equations, 249 (2010), 1726. doi: 10.1016/j.jde.2010.06.025.

[11]

D. Hilhorst, R. Kersner, E. Logak and M. Mimura, Interface dynamics of the Fisher equation with degenerate diffusion,, J. Differential Equations, 244 (2008), 2872. doi: 10.1016/j.jde.2008.02.018.

[12]

R. Huang, Stability of travelling fronts of the Fisher-KPP equation in $R^N$,, Nonlinear Diff. Equ. Appl., 15 (2008), 599. doi: 10.1007/s00030-008-7041-0.

[13]

A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Etude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique,, Bulletin Universit\'e d'Etat Moscou, (): 1.

[14]

D. A. Larson, Transient bounds and time-asymptotic behavior of solutions to nonlinear equations of Fisher type,, SIAM J. Appl. Math., 34 (1978), 93. doi: 10.1137/0134008.

[15]

K. S. Lau, On the nonlinear diffusion equation of Kolmogorov, Petrovsky, and Piscounov,, J. Differential Equations, 59 (1985), 44. doi: 10.1016/0022-0396(85)90137-8.

[16]

H. P. McKean, Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov,, Comm. Pure Appl. Math., 28 (1975), 323. doi: 10.1002/cpa.3160280302.

[17]

F. Rothe, Convergence to travelling fronts in semilinear parabolic equations,, Proc. Roy. Soc. Edinburgh Sect. A, 80 (1978), 213.

[18]

K. Uchiyama, The behavior of solutions of some nonlinear diffusion equations for large time,, J. Math. Kyoto Univ., 18 (1978), 453.

[19]

A. Volpert, V. Volpert and V. Volpert, "Travelling Wave Solutions of Parabolic Systems,", Translations of Mathematical Monographs, 140 (1994).

show all references

References:
[1]

M. Alfaro and A. Ducrot, Sharp interface limit of the Fisher-KPP equation,, to appear in Comm. Pure Appl. Anal., ().

[2]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation,, Partial differential equations and related topics (Program, 446 (1974), 5.

[3]

G. Barles, L. C. Evans and P. E. Souganidis, Wavefront propagation for reaction-diffusion systems of PDE,, Duke Math. J., 61 (1990), 835. doi: 10.1215/S0012-7094-90-06132-0.

[4]

G. Barles and P. E. Souganidis, A remark on the asymptotic behavior of the solution of the KPP equation,, C. R. Acad. Sci. Paris S\'erie I, 319 (1994), 679.

[5]

M. Bramson, Convergence of solutions of the Kolmogorov equation to travelling waves,, Mem. Amer. Math. Soc., 44 (1983).

[6]

X. Chen, Generation and propagation of interfaces for reaction-diffusion equations,, J. Differential equations, 96 (1992), 116. doi: 10.1016/0022-0396(92)90146-E.

[7]

L. C. Evans and P. E. Souganidis, A PDE approach to geometric optics for certain semilinear parabolic equations,, Indiana Univ. Math. J., 38 (1989), 141. doi: 10.1512/iumj.1989.38.38007.

[8]

R. A. Fisher, The wave of advance of advantageous genes,, Ann. of Eugenics, 7 (1937), 355. doi: 10.1111/j.1469-1809.1937.tb02153.x.

[9]

M. I. Freidlin, Limit theorems for large deviations and reaction-diffusion equations,, Ann. Probab., 13 (1985), 639. doi: 10.1214/aop/1176992901.

[10]

F. Hamel and L. Roques, Fast propagation for KPP equations with slowly decaying initial conditions,, J. Differential equations, 249 (2010), 1726. doi: 10.1016/j.jde.2010.06.025.

[11]

D. Hilhorst, R. Kersner, E. Logak and M. Mimura, Interface dynamics of the Fisher equation with degenerate diffusion,, J. Differential Equations, 244 (2008), 2872. doi: 10.1016/j.jde.2008.02.018.

[12]

R. Huang, Stability of travelling fronts of the Fisher-KPP equation in $R^N$,, Nonlinear Diff. Equ. Appl., 15 (2008), 599. doi: 10.1007/s00030-008-7041-0.

[13]

A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Etude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique,, Bulletin Universit\'e d'Etat Moscou, (): 1.

[14]

D. A. Larson, Transient bounds and time-asymptotic behavior of solutions to nonlinear equations of Fisher type,, SIAM J. Appl. Math., 34 (1978), 93. doi: 10.1137/0134008.

[15]

K. S. Lau, On the nonlinear diffusion equation of Kolmogorov, Petrovsky, and Piscounov,, J. Differential Equations, 59 (1985), 44. doi: 10.1016/0022-0396(85)90137-8.

[16]

H. P. McKean, Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov,, Comm. Pure Appl. Math., 28 (1975), 323. doi: 10.1002/cpa.3160280302.

[17]

F. Rothe, Convergence to travelling fronts in semilinear parabolic equations,, Proc. Roy. Soc. Edinburgh Sect. A, 80 (1978), 213.

[18]

K. Uchiyama, The behavior of solutions of some nonlinear diffusion equations for large time,, J. Math. Kyoto Univ., 18 (1978), 453.

[19]

A. Volpert, V. Volpert and V. Volpert, "Travelling Wave Solutions of Parabolic Systems,", Translations of Mathematical Monographs, 140 (1994).

[1]

Matthieu Alfaro, Arnaud Ducrot. Sharp interface limit of the Fisher-KPP equation. Communications on Pure & Applied Analysis, 2012, 11 (1) : 1-18. doi: 10.3934/cpaa.2012.11.1

[2]

Michael Stiassnie, Raphael Stuhlmeier. Progressive waves on a blunt interface. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3171-3182. doi: 10.3934/dcds.2014.34.3171

[3]

Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631

[4]

Anita T. Layton, J. Thomas Beale. A partially implicit hybrid method for computing interface motion in Stokes flow. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1139-1153. doi: 10.3934/dcdsb.2012.17.1139

[5]

Champike Attanayake, So-Hsiang Chou. An immersed interface method for Pennes bioheat transfer equation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 323-337. doi: 10.3934/dcdsb.2015.20.323

[6]

John R. King, Judith Pérez-Velázquez, H.M. Byrne. Singular travelling waves in a model for tumour encapsulation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 195-230. doi: 10.3934/dcds.2009.25.195

[7]

Yaping Wu, Xiuxia Xing, Qixiao Ye. Stability of travelling waves with algebraic decay for $n$-degree Fisher-type equations. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 47-66. doi: 10.3934/dcds.2006.16.47

[8]

Yi Li, Yaping Wu. Stability of travelling waves with noncritical speeds for double degenerate Fisher-Type equations. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 149-170. doi: 10.3934/dcdsb.2008.10.149

[9]

Ben A. Vanderlei, Matthew M. Hopkins, Lisa J. Fauci. Error estimation for immersed interface solutions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1185-1203. doi: 10.3934/dcdsb.2012.17.1185

[10]

Frédéric Lebon, Raffaella Rizzoni. Modeling a hard, thin curvilinear interface. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1569-1586. doi: 10.3934/dcdss.2013.6.1569

[11]

Shi Jin, Xu Yang, Guangwei Yuan. A domain decomposition method for a two-scale transport equation with energy flux conserved at the interface. Kinetic & Related Models, 2008, 1 (1) : 65-84. doi: 10.3934/krm.2008.1.65

[12]

Jing Li, Yifu Wang, Jingxue Yin. Non-sharp travelling waves for a dual porous medium equation. Communications on Pure & Applied Analysis, 2016, 15 (2) : 623-636. doi: 10.3934/cpaa.2016.15.623

[13]

Narcisa Apreutesei, Nikolai Bessonov, Vitaly Volpert, Vitali Vougalter. Spatial structures and generalized travelling waves for an integro-differential equation. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 537-557. doi: 10.3934/dcdsb.2010.13.537

[14]

Xiao-Qiang Zhao, Wendi Wang. Fisher waves in an epidemic model. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 1117-1128. doi: 10.3934/dcdsb.2004.4.1117

[15]

Paschalis Karageorgis. Small-data scattering for nonlinear waves with potential and initial data of critical decay. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 87-106. doi: 10.3934/dcds.2006.16.87

[16]

Dmitry Treschev. Travelling waves in FPU lattices. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 867-880. doi: 10.3934/dcds.2004.11.867

[17]

Zhongyi Huang. Tailored finite point method for the interface problem. Networks & Heterogeneous Media, 2009, 4 (1) : 91-106. doi: 10.3934/nhm.2009.4.91

[18]

Jian Hao, Zhilin Li, Sharon R. Lubkin. An augmented immersed interface method for moving structures with mass. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1175-1184. doi: 10.3934/dcdsb.2012.17.1175

[19]

Qiang Du, Manlin Li. On the stochastic immersed boundary method with an implicit interface formulation. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 373-389. doi: 10.3934/dcdsb.2011.15.373

[20]

Sara Monsurrò, Carmen Perugia. Homogenization and exact controllability for problems with imperfect interface. Networks & Heterogeneous Media, 2019, 14 (2) : 411-444. doi: 10.3934/nhm.2019017

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]