Citation: |
[1] |
V. I. Arnold (editor), "Encyclopaedia of Mathematical Sciences," Dynamical Systems III, Springer-Verlag 3, 1988. |
[2] |
S. Aubry and P. Y. Le Daeron, The discrete Frenkel-Kontorova model and its extensions. I, Physica D, 8 (1983), 381-422.doi: 10.1016/0167-2789(83)90233-6. |
[3] |
H. W. Broer, G. B. Huitema and M. B. Sevryuk, "Quasi-Periodic Motions in Families of Dynamical Systems. Order Amidst Chaos," Lecture Notes in Mathematics 1645, Springer-Verlag, Berlin, 1996. |
[4] |
H. W. Broer, C. Simó and J. C. Tatjer, Towards global models near homoclinic tangencies of dissipative diffeomorphisms, Nonlinearity, 11 (1998), 667-770.doi: 10.1088/0951-7715/11/3/015. |
[5] |
R. Calleja and A. Celletti, Breakdown of invariant attractors for the dissipative standard map, CHAOS, 20 013121, (2010).doi: 10.1063/1.3335408. |
[6] |
A. Celletti, "Stability and Chaos in Celestial Mechanics," Springer-Praxis, 2010.doi: 10.1007/978-3-540-85146-2. |
[7] |
A. Celletti and L. Chierchia, Construction of stable periodic orbits for the spin-orbit problem of celestial mechanics, Reg. Chaotic Dyn., 3 (1998), 107-121.doi: 10.1070/rd1998v003n03ABEH000084. |
[8] |
A. Celletti and L. Chierchia, Quasi-periodic attractors in celestial mechanics, Archive for Rational Mechanics and Analysis, 191 (2009), 311-345.doi: 10.1007/s00205-008-0141-5. |
[9] |
A. Celletti and C. Falcolini, Singularities of periodic orbits near invariant curves, Physica D, 170 (2002), 87-102.doi: 10.1016/S0167-2789(02)00543-2. |
[10] |
A. Celletti and M. Guzzo, Cantori of the dissipative sawtooth map, Chaos, 19 (2009), pp.6.doi: 10.1063/1.3094217. |
[11] |
A. Celletti and R. S. MacKay, Regions of non-existence of invariant tori for a spin-orbit model, Chaos, 17 (2007), pp.12.doi: 10.1063/1.2811880. |
[12] |
B. V. Chirikov, A universal instability of many dimensional oscillator systems, Physics Reports, 52 (1979), 264-379.doi: 10.1016/0370-1573(79)90023-1. |
[13] |
S. Y. Kim and D.S. Lee, Transition to chaos in a dissipative standardlike map, Phys. Rev. A, 45 (1992), 5480-5487.doi: 10.1103/PhysRevA.45.5480. |
[14] |
J. Mather, Existence of quasi-periodic orbits for twist homeomorphisms of the annulus, Topology, 21 (1982), 457-467.doi: 10.1016/0040-9383(82)90023-4. |
[15] |
J. Moser, On invariant curves of area-preserving mappings of an annulus, Nach. Akad. Wiss. Göttingen, Math. Phys. Kl. II, 1 (1962), 1-20. |
[16] |
I. C. Percival, Variational principles for invariant tori and cantori, AIP Conf. Proc., 57 (1980), 302-310.doi: 10.1063/1.32113. |
[17] |
W. Wenzel, O. Biham and C. Jayaprakash, Periodic orbits in the dissipative standard map, Phys. Rev. A, 43 (1991), 6550-6557.doi: 10.1103/PhysRevA.43.6550. |