-
Previous Article
Travelling waves of a reaction-diffusion model for the acidic nitrate-ferroin reaction
- DCDS-B Home
- This Issue
-
Next Article
Periodic and quasi--periodic orbits of the dissipative standard map
Dynamic phase transition for binary systems in cylindrical geometry
1. | Department of Mathematics and Taidar Institute of Mathematical Science, National Taiwan University, Taipei, 10617, Taiwan |
2. | Department of Mathematics and Taidar Institute of Mthematical Science, National Taiwan University, Taipei, 10617, Taiwan |
References:
[1] |
Stephen J. Blundell and Katherine M. Blundell, "Concepts in Thermal Physics,", Oxford University Press, (2008). Google Scholar |
[2] |
C. M. Elliott and H. Garcke, Diffusional phase transitions in multicomponent systems with a concentration dependent mobility matrix,, Physica D, 109 (1997), 242.
doi: 10.1016/S0167-2789(97)00066-3. |
[3] |
J. E. Hilliard, Spinodal decomposition,, in Phase Transformations, (1970), 497. Google Scholar |
[4] |
T. Ma and S. Wang, "Bifurcation Theory and Applications,", vol. \textbf{53} of World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, 53 ().
|
[5] |
T. Ma and S. Wang, Dynamic phase transition theory in PVT systems,, Indiana Univ. Math. J., 57 (2008), 2861.
doi: 10.1512/iumj.2008.57.3630. |
[6] |
T. Ma and S. Wang, Cahn-Hilliard equations and phase transition dynamics for binary systems,, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 741.
doi: 10.3934/dcdsb.2009.11.741. |
[7] |
T. Ma and S. Wang, Phase separation of binary systems,, Phys. Rev. A., 388 (2009), 4811. Google Scholar |
[8] |
J. Moser, A rapidly convergent iteration method and nonlinear partial differential equation. I,, Ann. Sc. Norm. Super. Pisa, 20 (1966), 265.
|
[9] |
L. E. Reichl, "A Modern Course in Statistical Physics," (Second ed.), A Wiley-Interscinece Publication. New York: John Wiley & Sons Inc. 1998., (1998). Google Scholar |
show all references
References:
[1] |
Stephen J. Blundell and Katherine M. Blundell, "Concepts in Thermal Physics,", Oxford University Press, (2008). Google Scholar |
[2] |
C. M. Elliott and H. Garcke, Diffusional phase transitions in multicomponent systems with a concentration dependent mobility matrix,, Physica D, 109 (1997), 242.
doi: 10.1016/S0167-2789(97)00066-3. |
[3] |
J. E. Hilliard, Spinodal decomposition,, in Phase Transformations, (1970), 497. Google Scholar |
[4] |
T. Ma and S. Wang, "Bifurcation Theory and Applications,", vol. \textbf{53} of World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, 53 ().
|
[5] |
T. Ma and S. Wang, Dynamic phase transition theory in PVT systems,, Indiana Univ. Math. J., 57 (2008), 2861.
doi: 10.1512/iumj.2008.57.3630. |
[6] |
T. Ma and S. Wang, Cahn-Hilliard equations and phase transition dynamics for binary systems,, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 741.
doi: 10.3934/dcdsb.2009.11.741. |
[7] |
T. Ma and S. Wang, Phase separation of binary systems,, Phys. Rev. A., 388 (2009), 4811. Google Scholar |
[8] |
J. Moser, A rapidly convergent iteration method and nonlinear partial differential equation. I,, Ann. Sc. Norm. Super. Pisa, 20 (1966), 265.
|
[9] |
L. E. Reichl, "A Modern Course in Statistical Physics," (Second ed.), A Wiley-Interscinece Publication. New York: John Wiley & Sons Inc. 1998., (1998). Google Scholar |
[1] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[2] |
Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 501-514. doi: 10.3934/dcdsb.2020350 |
[3] |
Tomáš Smejkal, Jiří Mikyška, Jaromír Kukal. Comparison of modern heuristics on solving the phase stability testing problem. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1161-1180. doi: 10.3934/dcdss.2020227 |
[4] |
Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275 |
[5] |
Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020467 |
[6] |
Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021013 |
[7] |
Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292 |
[8] |
Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315 |
[9] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[10] |
Akbar Mahmoodi Rishakani, Seyed Mojtaba Dehnavi, Mohmmadreza Mirzaee Shamsabad, Nasour Bagheri. Cryptographic properties of cyclic binary matrices. Advances in Mathematics of Communications, 2021, 15 (2) : 311-327. doi: 10.3934/amc.2020068 |
[11] |
Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020400 |
[12] |
Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173 |
[13] |
Maicon Sônego. Stable transition layers in an unbalanced bistable equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020370 |
[14] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[15] |
Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325 |
[16] |
Lin Shi, Dingshi Li, Kening Lu. Limiting behavior of unstable manifolds for spdes in varying phase spaces. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021020 |
[17] |
Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141 |
[18] |
Yuyuan Ouyang, Trevor Squires. Some worst-case datasets of deterministic first-order methods for solving binary logistic regression. Inverse Problems & Imaging, 2021, 15 (1) : 63-77. doi: 10.3934/ipi.2020047 |
[19] |
Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032 |
[20] |
Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]