July  2011, 16(1): 173-188. doi: 10.3934/dcdsb.2011.16.173

Dynamic phase transition for binary systems in cylindrical geometry

1. 

Department of Mathematics and Taidar Institute of Mathematical Science, National Taiwan University, Taipei, 10617, Taiwan

2. 

Department of Mathematics and Taidar Institute of Mthematical Science, National Taiwan University, Taipei, 10617, Taiwan

Received  February 2010 Revised  August 2010 Published  April 2011

In this article, we present a dynamic phase transition and stability analysis for the Cahn-Hilliard equations in cylindrical geometry. Two types of phase transitions (the continuous type and the jump type) are determined explicitly in terms of relevant physical and geometric parameters.
Citation: I-Liang Chern, Chun-Hsiung Hsia. Dynamic phase transition for binary systems in cylindrical geometry. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 173-188. doi: 10.3934/dcdsb.2011.16.173
References:
[1]

Stephen J. Blundell and Katherine M. Blundell, "Concepts in Thermal Physics,", Oxford University Press, (2008).   Google Scholar

[2]

C. M. Elliott and H. Garcke, Diffusional phase transitions in multicomponent systems with a concentration dependent mobility matrix,, Physica D, 109 (1997), 242.  doi: 10.1016/S0167-2789(97)00066-3.  Google Scholar

[3]

J. E. Hilliard, Spinodal decomposition,, in Phase Transformations, (1970), 497.   Google Scholar

[4]

T. Ma and S. Wang, "Bifurcation Theory and Applications,", vol. \textbf{53} of World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, 53 ().   Google Scholar

[5]

T. Ma and S. Wang, Dynamic phase transition theory in PVT systems,, Indiana Univ. Math. J., 57 (2008), 2861.  doi: 10.1512/iumj.2008.57.3630.  Google Scholar

[6]

T. Ma and S. Wang, Cahn-Hilliard equations and phase transition dynamics for binary systems,, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 741.  doi: 10.3934/dcdsb.2009.11.741.  Google Scholar

[7]

T. Ma and S. Wang, Phase separation of binary systems,, Phys. Rev. A., 388 (2009), 4811.   Google Scholar

[8]

J. Moser, A rapidly convergent iteration method and nonlinear partial differential equation. I,, Ann. Sc. Norm. Super. Pisa, 20 (1966), 265.   Google Scholar

[9]

L. E. Reichl, "A Modern Course in Statistical Physics," (Second ed.), A Wiley-Interscinece Publication. New York: John Wiley & Sons Inc. 1998., (1998).   Google Scholar

show all references

References:
[1]

Stephen J. Blundell and Katherine M. Blundell, "Concepts in Thermal Physics,", Oxford University Press, (2008).   Google Scholar

[2]

C. M. Elliott and H. Garcke, Diffusional phase transitions in multicomponent systems with a concentration dependent mobility matrix,, Physica D, 109 (1997), 242.  doi: 10.1016/S0167-2789(97)00066-3.  Google Scholar

[3]

J. E. Hilliard, Spinodal decomposition,, in Phase Transformations, (1970), 497.   Google Scholar

[4]

T. Ma and S. Wang, "Bifurcation Theory and Applications,", vol. \textbf{53} of World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, 53 ().   Google Scholar

[5]

T. Ma and S. Wang, Dynamic phase transition theory in PVT systems,, Indiana Univ. Math. J., 57 (2008), 2861.  doi: 10.1512/iumj.2008.57.3630.  Google Scholar

[6]

T. Ma and S. Wang, Cahn-Hilliard equations and phase transition dynamics for binary systems,, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 741.  doi: 10.3934/dcdsb.2009.11.741.  Google Scholar

[7]

T. Ma and S. Wang, Phase separation of binary systems,, Phys. Rev. A., 388 (2009), 4811.   Google Scholar

[8]

J. Moser, A rapidly convergent iteration method and nonlinear partial differential equation. I,, Ann. Sc. Norm. Super. Pisa, 20 (1966), 265.   Google Scholar

[9]

L. E. Reichl, "A Modern Course in Statistical Physics," (Second ed.), A Wiley-Interscinece Publication. New York: John Wiley & Sons Inc. 1998., (1998).   Google Scholar

[1]

Raffaele Esposito, Yan Guo, Rossana Marra. Stability of a Vlasov-Boltzmann binary mixture at the phase transition on an interval. Kinetic & Related Models, 2013, 6 (4) : 761-787. doi: 10.3934/krm.2013.6.761

[2]

Tian Ma, Shouhong Wang. Cahn-Hilliard equations and phase transition dynamics for binary systems. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 741-784. doi: 10.3934/dcdsb.2009.11.741

[3]

Shubo Zhao, Ping Liu, Mingchao Jiang. Stability and bifurcation analysis in a chemotaxis bistable growth system. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1165-1174. doi: 10.3934/dcdss.2017063

[4]

Radosław Kurek, Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. Ⅲ. Splitting of separatrices and chaos. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1955-1981. doi: 10.3934/dcds.2018079

[5]

Matteo Novaga, Enrico Valdinoci. The geometry of mesoscopic phase transition interfaces. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 777-798. doi: 10.3934/dcds.2007.19.777

[6]

Alain Miranville. Some mathematical models in phase transition. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 271-306. doi: 10.3934/dcdss.2014.7.271

[7]

Jun Yang. Coexistence phenomenon of concentration and transition of an inhomogeneous phase transition model on surfaces. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 965-994. doi: 10.3934/dcds.2011.30.965

[8]

Roberto Alicandro, Andrea Braides, Marco Cicalese. Phase and anti-phase boundaries in binary discrete systems: a variational viewpoint. Networks & Heterogeneous Media, 2006, 1 (1) : 85-107. doi: 10.3934/nhm.2006.1.85

[9]

Mauro Garavello, Benedetto Piccoli. Coupling of microscopic and phase transition models at boundary. Networks & Heterogeneous Media, 2013, 8 (3) : 649-661. doi: 10.3934/nhm.2013.8.649

[10]

Emanuela Caliceti, Sandro Graffi. An existence criterion for the $\mathcal{PT}$-symmetric phase transition. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1955-1967. doi: 10.3934/dcdsb.2014.19.1955

[11]

Pavel Krejčí, Jürgen Sprekels. Long time behaviour of a singular phase transition model. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1119-1135. doi: 10.3934/dcds.2006.15.1119

[12]

Mauro Garavello. Boundary value problem for a phase transition model. Networks & Heterogeneous Media, 2016, 11 (1) : 89-105. doi: 10.3934/nhm.2016.11.89

[13]

Mauro Garavello, Francesca Marcellini. The Riemann Problem at a Junction for a Phase Transition Traffic Model. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5191-5209. doi: 10.3934/dcds.2017225

[14]

Maya Briani, Benedetto Piccoli. Fluvial to torrential phase transition in open canals. Networks & Heterogeneous Media, 2018, 13 (4) : 663-690. doi: 10.3934/nhm.2018030

[15]

Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part II: The nonlinear system.. Evolution Equations & Control Theory, 2014, 3 (1) : 83-118. doi: 10.3934/eect.2014.3.83

[16]

Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part I: The linearized system.. Evolution Equations & Control Theory, 2014, 3 (1) : 59-82. doi: 10.3934/eect.2014.3.59

[17]

Pierluigi Colli, Antonio Segatti. Uniform attractors for a phase transition model coupling momentum balance and phase dynamics. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 909-932. doi: 10.3934/dcds.2008.22.909

[18]

Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. I. Invariant torus and its normal hyperbolicity. Journal of Geometric Mechanics, 2012, 4 (4) : 443-467. doi: 10.3934/jgm.2012.4.443

[19]

Xiaoyuan Chang, Junjie Wei. Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge. Mathematical Biosciences & Engineering, 2013, 10 (4) : 979-996. doi: 10.3934/mbe.2013.10.979

[20]

Chun-Hao Teng, I-Liang Chern, Ming-Chih Lai. Simulating binary fluid-surfactant dynamics by a phase field model. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1289-1307. doi: 10.3934/dcdsb.2012.17.1289

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]