Advanced Search
Article Contents
Article Contents

Dynamic phase transition for binary systems in cylindrical geometry

Abstract Related Papers Cited by
  • In this article, we present a dynamic phase transition and stability analysis for the Cahn-Hilliard equations in cylindrical geometry. Two types of phase transitions (the continuous type and the jump type) are determined explicitly in terms of relevant physical and geometric parameters.
    Mathematics Subject Classification: 37G35.


    \begin{equation} \\ \end{equation}
  • [1]

    Stephen J. Blundell and Katherine M. Blundell, "Concepts in Thermal Physics," Oxford University Press, 2008.


    C. M. Elliott and H. Garcke, Diffusional phase transitions in multicomponent systems with a concentration dependent mobility matrix, Physica D, 109 (1997), 242-256.doi: 10.1016/S0167-2789(97)00066-3.


    J. E. Hilliard, Spinodal decomposition, in Phase Transformations, American Society for Metal, Cleveland, (1970), 497-560.


    T. Ma and S. Wang, "Bifurcation Theory and Applications," vol. 53 of World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises,


    T. Ma and S. Wang, Dynamic phase transition theory in PVT systems, Indiana Univ. Math. J., 57 (2008), 2861-2889.doi: 10.1512/iumj.2008.57.3630.


    T. Ma and S. Wang, Cahn-Hilliard equations and phase transition dynamics for binary systems, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 741-784.doi: 10.3934/dcdsb.2009.11.741.


    T. Ma and S. Wang, Phase separation of binary systems, Phys. Rev. A., 388 (2009), 4811-4817.


    J. Moser, A rapidly convergent iteration method and nonlinear partial differential equation. I, Ann. Sc. Norm. Super. Pisa, 20 (1966), 265-315.


    L. E. Reichl, "A Modern Course in Statistical Physics," (Second ed.) A Wiley-Interscinece Publication. New York: John Wiley & Sons Inc. 1998.

  • 加载中

Article Metrics

HTML views() PDF downloads(106) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint