July  2011, 16(1): 173-188. doi: 10.3934/dcdsb.2011.16.173

Dynamic phase transition for binary systems in cylindrical geometry

1. 

Department of Mathematics and Taidar Institute of Mathematical Science, National Taiwan University, Taipei, 10617, Taiwan

2. 

Department of Mathematics and Taidar Institute of Mthematical Science, National Taiwan University, Taipei, 10617, Taiwan

Received  February 2010 Revised  August 2010 Published  April 2011

In this article, we present a dynamic phase transition and stability analysis for the Cahn-Hilliard equations in cylindrical geometry. Two types of phase transitions (the continuous type and the jump type) are determined explicitly in terms of relevant physical and geometric parameters.
Citation: I-Liang Chern, Chun-Hsiung Hsia. Dynamic phase transition for binary systems in cylindrical geometry. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 173-188. doi: 10.3934/dcdsb.2011.16.173
References:
[1]

Stephen J. Blundell and Katherine M. Blundell, "Concepts in Thermal Physics," Oxford University Press, 2008.

[2]

C. M. Elliott and H. Garcke, Diffusional phase transitions in multicomponent systems with a concentration dependent mobility matrix, Physica D, 109 (1997), 242-256. doi: 10.1016/S0167-2789(97)00066-3.

[3]

J. E. Hilliard, Spinodal decomposition, in Phase Transformations, American Society for Metal, Cleveland, (1970), 497-560.

[4]

T. Ma and S. Wang, "Bifurcation Theory and Applications," vol. 53 of World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises,

[5]

T. Ma and S. Wang, Dynamic phase transition theory in PVT systems, Indiana Univ. Math. J., 57 (2008), 2861-2889. doi: 10.1512/iumj.2008.57.3630.

[6]

T. Ma and S. Wang, Cahn-Hilliard equations and phase transition dynamics for binary systems, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 741-784. doi: 10.3934/dcdsb.2009.11.741.

[7]

T. Ma and S. Wang, Phase separation of binary systems, Phys. Rev. A., 388 (2009), 4811-4817.

[8]

J. Moser, A rapidly convergent iteration method and nonlinear partial differential equation. I, Ann. Sc. Norm. Super. Pisa, 20 (1966), 265-315.

[9]

L. E. Reichl, "A Modern Course in Statistical Physics," (Second ed.) A Wiley-Interscinece Publication. New York: John Wiley & Sons Inc. 1998.

show all references

References:
[1]

Stephen J. Blundell and Katherine M. Blundell, "Concepts in Thermal Physics," Oxford University Press, 2008.

[2]

C. M. Elliott and H. Garcke, Diffusional phase transitions in multicomponent systems with a concentration dependent mobility matrix, Physica D, 109 (1997), 242-256. doi: 10.1016/S0167-2789(97)00066-3.

[3]

J. E. Hilliard, Spinodal decomposition, in Phase Transformations, American Society for Metal, Cleveland, (1970), 497-560.

[4]

T. Ma and S. Wang, "Bifurcation Theory and Applications," vol. 53 of World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises,

[5]

T. Ma and S. Wang, Dynamic phase transition theory in PVT systems, Indiana Univ. Math. J., 57 (2008), 2861-2889. doi: 10.1512/iumj.2008.57.3630.

[6]

T. Ma and S. Wang, Cahn-Hilliard equations and phase transition dynamics for binary systems, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 741-784. doi: 10.3934/dcdsb.2009.11.741.

[7]

T. Ma and S. Wang, Phase separation of binary systems, Phys. Rev. A., 388 (2009), 4811-4817.

[8]

J. Moser, A rapidly convergent iteration method and nonlinear partial differential equation. I, Ann. Sc. Norm. Super. Pisa, 20 (1966), 265-315.

[9]

L. E. Reichl, "A Modern Course in Statistical Physics," (Second ed.) A Wiley-Interscinece Publication. New York: John Wiley & Sons Inc. 1998.

[1]

Raffaele Esposito, Yan Guo, Rossana Marra. Stability of a Vlasov-Boltzmann binary mixture at the phase transition on an interval. Kinetic and Related Models, 2013, 6 (4) : 761-787. doi: 10.3934/krm.2013.6.761

[2]

Tian Ma, Shouhong Wang. Cahn-Hilliard equations and phase transition dynamics for binary systems. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 741-784. doi: 10.3934/dcdsb.2009.11.741

[3]

Quan Wang, Dongming Yan. On the stability and transition of the Cahn-Hilliard/Allen-Cahn system. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2607-2620. doi: 10.3934/dcdsb.2020024

[4]

Shubo Zhao, Ping Liu, Mingchao Jiang. Stability and bifurcation analysis in a chemotaxis bistable growth system. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1165-1174. doi: 10.3934/dcdss.2017063

[5]

Radosław Kurek, Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. Ⅲ. Splitting of separatrices and chaos. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1955-1981. doi: 10.3934/dcds.2018079

[6]

Matteo Novaga, Enrico Valdinoci. The geometry of mesoscopic phase transition interfaces. Discrete and Continuous Dynamical Systems, 2007, 19 (4) : 777-798. doi: 10.3934/dcds.2007.19.777

[7]

Alain Miranville. Some mathematical models in phase transition. Discrete and Continuous Dynamical Systems - S, 2014, 7 (2) : 271-306. doi: 10.3934/dcdss.2014.7.271

[8]

Jun Yang. Coexistence phenomenon of concentration and transition of an inhomogeneous phase transition model on surfaces. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 965-994. doi: 10.3934/dcds.2011.30.965

[9]

Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part II: The nonlinear system.. Evolution Equations and Control Theory, 2014, 3 (1) : 83-118. doi: 10.3934/eect.2014.3.83

[10]

Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part I: The linearized system.. Evolution Equations and Control Theory, 2014, 3 (1) : 59-82. doi: 10.3934/eect.2014.3.59

[11]

Mauro Garavello, Benedetto Piccoli. Coupling of microscopic and phase transition models at boundary. Networks and Heterogeneous Media, 2013, 8 (3) : 649-661. doi: 10.3934/nhm.2013.8.649

[12]

Emanuela Caliceti, Sandro Graffi. An existence criterion for the $\mathcal{PT}$-symmetric phase transition. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 1955-1967. doi: 10.3934/dcdsb.2014.19.1955

[13]

Pavel Krejčí, Jürgen Sprekels. Long time behaviour of a singular phase transition model. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1119-1135. doi: 10.3934/dcds.2006.15.1119

[14]

Mauro Garavello. Boundary value problem for a phase transition model. Networks and Heterogeneous Media, 2016, 11 (1) : 89-105. doi: 10.3934/nhm.2016.11.89

[15]

Mauro Garavello, Francesca Marcellini. The Riemann Problem at a Junction for a Phase Transition Traffic Model. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5191-5209. doi: 10.3934/dcds.2017225

[16]

Maya Briani, Benedetto Piccoli. Fluvial to torrential phase transition in open canals. Networks and Heterogeneous Media, 2018, 13 (4) : 663-690. doi: 10.3934/nhm.2018030

[17]

Roberto Alicandro, Andrea Braides, Marco Cicalese. Phase and anti-phase boundaries in binary discrete systems: a variational viewpoint. Networks and Heterogeneous Media, 2006, 1 (1) : 85-107. doi: 10.3934/nhm.2006.1.85

[18]

Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. I. Invariant torus and its normal hyperbolicity. Journal of Geometric Mechanics, 2012, 4 (4) : 443-467. doi: 10.3934/jgm.2012.4.443

[19]

Pierluigi Colli, Antonio Segatti. Uniform attractors for a phase transition model coupling momentum balance and phase dynamics. Discrete and Continuous Dynamical Systems, 2008, 22 (4) : 909-932. doi: 10.3934/dcds.2008.22.909

[20]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (95)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]