\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Travelling waves of a reaction-diffusion model for the acidic nitrate-ferroin reaction

Abstract Related Papers Cited by
  • In this paper we consider a reaction-diffusion system which describes the acidic nitrate-ferroin reaction. We first show that there exists a minimum speed travelling wave solution. Then some estimates of the minimum speed(s) are derived. Finally, we find that the set of admissible wave speed is $[c_{m i n},\infty)$ under certain condition.
    Mathematics Subject Classification: Primary: 35K40; Secondary: 34A34, 35Q80, 35K57.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    X. Chen and Y. Qi, Sharp estimates on minimum travelling wave speed of reaction diffusion systems modelling autocatalysis, SIAM. J. Math. Anal., 39 (2007), 437-448.doi: 10.1137/060665749.

    [2]

    A. Kolmogoroff, I. Petrovsky and N. Piscounoff, Etude de l'quation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Moscow Univ. Bull. Math., 1 (1937), 1-25.

    [3]

    I. Lengyel, G. Pota and G. Bazsa, Wave profile in the acidic nitrate-ferroin reaction, J. Chem. Soc. Faraday Trans., 87 (1991), 3613-3615.doi: 10.1039/ft9918703613.

    [4]

    J. H. Merkin and M. A. Sadiq, Reaction-diffusion travelling waves in the acidic nitrate-ferroin reaction, J. Math. Chem., 17 (1995), 357-375.doi: 10.1007/BF01165755.

    [5]

    G. Pota, I. Lengyel and G. Bazsa, Travelling waves in the acidic nitrate-ferroin reaction, J. Chem. Soc. Faraday Trans., 85 (1989), 3871-3877.doi: 10.1039/f19898503871.

    [6]

    G. Pota, I. Lengyel and G. Bazsa, Travelling waves in the acidic nitrate-iron(II) reaction: Analytical description of the wave velocity, J. Phys. Chem., 95 (1991), 4379-4381.doi: 10.1021/j100164a039.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(109) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return