-
Previous Article
Existence theorem for a model of dryland vegetation
- DCDS-B Home
- This Issue
-
Next Article
Dynamic phase transition for binary systems in cylindrical geometry
Travelling waves of a reaction-diffusion model for the acidic nitrate-ferroin reaction
1. | Department of Mathematical Sciences, National Chengchi University, 64, S-2 Zhi-nan Road, Taipei 116, Taiwan |
References:
[1] |
X. Chen and Y. Qi, Sharp estimates on minimum travelling wave speed of reaction diffusion systems modelling autocatalysis, SIAM. J. Math. Anal., 39 (2007), 437-448.
doi: 10.1137/060665749. |
[2] |
A. Kolmogoroff, I. Petrovsky and N. Piscounoff, Etude de l'quation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Moscow Univ. Bull. Math., 1 (1937), 1-25. |
[3] |
I. Lengyel, G. Pota and G. Bazsa, Wave profile in the acidic nitrate-ferroin reaction, J. Chem. Soc. Faraday Trans., 87 (1991), 3613-3615.
doi: 10.1039/ft9918703613. |
[4] |
J. H. Merkin and M. A. Sadiq, Reaction-diffusion travelling waves in the acidic nitrate-ferroin reaction, J. Math. Chem., 17 (1995), 357-375.
doi: 10.1007/BF01165755. |
[5] |
G. Pota, I. Lengyel and G. Bazsa, Travelling waves in the acidic nitrate-ferroin reaction, J. Chem. Soc. Faraday Trans., 85 (1989), 3871-3877.
doi: 10.1039/f19898503871. |
[6] |
G. Pota, I. Lengyel and G. Bazsa, Travelling waves in the acidic nitrate-iron(II) reaction: Analytical description of the wave velocity, J. Phys. Chem., 95 (1991), 4379-4381.
doi: 10.1021/j100164a039. |
show all references
References:
[1] |
X. Chen and Y. Qi, Sharp estimates on minimum travelling wave speed of reaction diffusion systems modelling autocatalysis, SIAM. J. Math. Anal., 39 (2007), 437-448.
doi: 10.1137/060665749. |
[2] |
A. Kolmogoroff, I. Petrovsky and N. Piscounoff, Etude de l'quation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Moscow Univ. Bull. Math., 1 (1937), 1-25. |
[3] |
I. Lengyel, G. Pota and G. Bazsa, Wave profile in the acidic nitrate-ferroin reaction, J. Chem. Soc. Faraday Trans., 87 (1991), 3613-3615.
doi: 10.1039/ft9918703613. |
[4] |
J. H. Merkin and M. A. Sadiq, Reaction-diffusion travelling waves in the acidic nitrate-ferroin reaction, J. Math. Chem., 17 (1995), 357-375.
doi: 10.1007/BF01165755. |
[5] |
G. Pota, I. Lengyel and G. Bazsa, Travelling waves in the acidic nitrate-ferroin reaction, J. Chem. Soc. Faraday Trans., 85 (1989), 3871-3877.
doi: 10.1039/f19898503871. |
[6] |
G. Pota, I. Lengyel and G. Bazsa, Travelling waves in the acidic nitrate-iron(II) reaction: Analytical description of the wave velocity, J. Phys. Chem., 95 (1991), 4379-4381.
doi: 10.1021/j100164a039. |
[1] |
Sheng-Chen Fu, Je-Chiang Tsai. Stability of travelling waves of a reaction-diffusion system for the acidic nitrate-ferroin reaction. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 4041-4069. doi: 10.3934/dcds.2013.33.4041 |
[2] |
Wei Wang, Wanbiao Ma. Global dynamics and travelling wave solutions for a class of non-cooperative reaction-diffusion systems with nonlocal infections. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3213-3235. doi: 10.3934/dcdsb.2018242 |
[3] |
Tiberiu Harko, Man Kwong Mak. Travelling wave solutions of the reaction-diffusion mathematical model of glioblastoma growth: An Abel equation based approach. Mathematical Biosciences & Engineering, 2015, 12 (1) : 41-69. doi: 10.3934/mbe.2015.12.41 |
[4] |
Anton S. Zadorin. Exact travelling solution for a reaction-diffusion system with a piecewise constant production supported by a codimension-1 subspace. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1567-1580. doi: 10.3934/cpaa.2022030 |
[5] |
C. van der Mee, Stella Vernier Piro. Travelling waves for solid-gas reaction-diffusion systems. Conference Publications, 2003, 2003 (Special) : 872-879. doi: 10.3934/proc.2003.2003.872 |
[6] |
H. J. Hupkes, L. Morelli. Travelling corners for spatially discrete reaction-diffusion systems. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1609-1667. doi: 10.3934/cpaa.2020058 |
[7] |
Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631 |
[8] |
Yansu Ji, Jianwei Shen, Xiaochen Mao. Pattern formation of Brusselator in the reaction-diffusion system. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022103 |
[9] |
Jifa Jiang, Junping Shi. Dynamics of a reaction-diffusion system of autocatalytic chemical reaction. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 245-258. doi: 10.3934/dcds.2008.21.245 |
[10] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[11] |
Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057 |
[12] |
Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure and Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057 |
[13] |
Cheng-Hsiung Hsu, Jian-Jhong Lin. Stability analysis of traveling wave solutions for lattice reaction-diffusion equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1757-1774. doi: 10.3934/dcdsb.2020001 |
[14] |
Vladimir V. Chepyzhov, Mark I. Vishik. Trajectory attractor for reaction-diffusion system with diffusion coefficient vanishing in time. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1493-1509. doi: 10.3934/dcds.2010.27.1493 |
[15] |
Yong Jung Kim, Wei-Ming Ni, Masaharu Taniguchi. Non-existence of localized travelling waves with non-zero speed in single reaction-diffusion equations. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3707-3718. doi: 10.3934/dcds.2013.33.3707 |
[16] |
Yuzo Hosono. Phase plane analysis of travelling waves for higher order autocatalytic reaction-diffusion systems. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 115-125. doi: 10.3934/dcdsb.2007.8.115 |
[17] |
Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405 |
[18] |
Matthieu Alfaro, Jérôme Coville, Gaël Raoul. Bistable travelling waves for nonlocal reaction diffusion equations. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1775-1791. doi: 10.3934/dcds.2014.34.1775 |
[19] |
Sze-Bi Hsu, Junping Shi, Feng-Bin Wang. Further studies of a reaction-diffusion system for an unstirred chemostat with internal storage. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3169-3189. doi: 10.3934/dcdsb.2014.19.3169 |
[20] |
Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. Determination of initial data for a reaction-diffusion system with variable coefficients. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 771-801. doi: 10.3934/dcds.2019032 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]