July  2011, 16(1): 239-263. doi: 10.3934/dcdsb.2011.16.239

Stabilization via symmetry switching in hybrid dynamical systems

1. 

Chair of Applied Mathematics, University of Paderborn, D-33098 Paderborn, Germany, Germany

Received  June 2010 Revised  February 2011 Published  April 2011

With a view to stabilization issues of hybrid systems exhibiting a regular structure in terms of symmetry, we introduce the concept of symmetry switching and relate symmetry-induced switching strategies to the asymptotic stability of switched linear systems. To this end, a general notion of hybrid symmetries for switched systems is established whereupon orbital switching is treated which builds on the existence of hybrid symmetries. In the main part, we formulate and prove sufficient conditions for asymptotic stability under slow symmetry switching. As an example of both theoretical and practical interest, we examine time-varying networks of dynamical systems and perform stabilization by means of orbital switching. Behind all that, this work is meant to provide the groundwork for the treatment of equivariant bifurcation phenomena of hybrid systems.
Citation: Sebastian Hage-Packhäuser, Michael Dellnitz. Stabilization via symmetry switching in hybrid dynamical systems. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 239-263. doi: 10.3934/dcdsb.2011.16.239
References:
[1]

M. Dellnitz and S. Hage-Packhäuser, A global symmetry framework for Hybrid dynamical systems,, preprint., ().   Google Scholar

[2]

B. Dionne, M. Golubitsky and I. Stewart, Coupled cells with internal symmetry: I. Wreath products,, Nonlinearity, 9 (1996), 559.  doi: 10.1088/0951-7715/9/2/016.  Google Scholar

[3]

B. Dionne, M. Golubitsky and I. Stewart, Coupled cells with internal symmetry: II. Direct products,, Nonlinearity, 9 (1996), 575.  doi: 10.1088/0951-7715/9/2/017.  Google Scholar

[4]

B. Fiedler, "Global Bifurcation of Periodic Solutions with Symmetry,", volume $1309$ of Lecture Notes in Mathematics, (1988).   Google Scholar

[5]

M. Golubitsky and I. Stewart, "The Symmetry Perspective. From Equilibrium to Chaos in Phase Space and Physical Space,", volume $200$ of Progress in Mathematics, (2002).   Google Scholar

[6]

M. Golubitsky, I. Stewart and D. G. Schaeffer, "Singularities and Groups in Bifurcation Theory Vol. II,", volume $69$ of Applied Mathematical Sciences, (1988).   Google Scholar

[7]

M. Golubitsky and I. Stewart, Nonlinear dynamics of networks: The groupoid formalism,, Bulletin of the American Mathematical Society, 43 (2006), 305.  doi: 10.1090/S0273-0979-06-01108-6.  Google Scholar

[8]

L. Gurvits, Stability of discrete linear inclusion,, Linear Algebra Appl., 231 (1995), 47.  doi: 10.1016/0024-3795(95)90006-3.  Google Scholar

[9]

P. Holmes, J. L. Lumley and G. Berkooz, "Turbulence, Coherent Structures, Dynamical Systems and Symmetry,", volume II of Applied Mathematical Sciences, (1996).   Google Scholar

[10]

J. S. W. Lamb, k-symmetry and return maps of spacetime symmetric flows,, Nonlinearity, 11 (1998), 601.  doi: 10.1088/0951-7715/11/3/011.  Google Scholar

[11]

D. Liberzon, "On New Sufficient Conditions for Stability of Switched Linear Systems,", Proceedings of the 2009 European Control Conference, (2009).   Google Scholar

[12]

D. Liberzon, "Switching in Systems and Control,", Systems and Control: Foundations and Applications Birkhäuser, (2003).   Google Scholar

[13]

J. Lygeros, K. H. Johansson, S. N. Simic, J. Zhang and S. Sastry, Dynamical properties of Hybrid automata,, IEEE Transactions on Automatic Control, 48 (2003), 2.  doi: 10.1109/TAC.2002.806650.  Google Scholar

[14]

J. Lygeros, K. H. Johansson, S. Sastry and M. Egerstedt, On the existence of executions of Hybrid automata,, Proceedings of the 38$^{th}$ IEEE Conference on Decision and Control 1999, 3 (1999), 2249.   Google Scholar

[15]

S. N. Simic, K. H. Johansson, J. Lygeros and S. Sastry, Towards a geometric theory of Hybrid systems,, Dynamics of Continuous, 12 (2005), 649.   Google Scholar

[16]

A. van der Schaft and H. Schumacher, "An Introduction to Hybrid Dynamical Systems,", Number 251 in Lecture Notes in Control and Information Sciences Springer-Verlag, (2000).   Google Scholar

show all references

References:
[1]

M. Dellnitz and S. Hage-Packhäuser, A global symmetry framework for Hybrid dynamical systems,, preprint., ().   Google Scholar

[2]

B. Dionne, M. Golubitsky and I. Stewart, Coupled cells with internal symmetry: I. Wreath products,, Nonlinearity, 9 (1996), 559.  doi: 10.1088/0951-7715/9/2/016.  Google Scholar

[3]

B. Dionne, M. Golubitsky and I. Stewart, Coupled cells with internal symmetry: II. Direct products,, Nonlinearity, 9 (1996), 575.  doi: 10.1088/0951-7715/9/2/017.  Google Scholar

[4]

B. Fiedler, "Global Bifurcation of Periodic Solutions with Symmetry,", volume $1309$ of Lecture Notes in Mathematics, (1988).   Google Scholar

[5]

M. Golubitsky and I. Stewart, "The Symmetry Perspective. From Equilibrium to Chaos in Phase Space and Physical Space,", volume $200$ of Progress in Mathematics, (2002).   Google Scholar

[6]

M. Golubitsky, I. Stewart and D. G. Schaeffer, "Singularities and Groups in Bifurcation Theory Vol. II,", volume $69$ of Applied Mathematical Sciences, (1988).   Google Scholar

[7]

M. Golubitsky and I. Stewart, Nonlinear dynamics of networks: The groupoid formalism,, Bulletin of the American Mathematical Society, 43 (2006), 305.  doi: 10.1090/S0273-0979-06-01108-6.  Google Scholar

[8]

L. Gurvits, Stability of discrete linear inclusion,, Linear Algebra Appl., 231 (1995), 47.  doi: 10.1016/0024-3795(95)90006-3.  Google Scholar

[9]

P. Holmes, J. L. Lumley and G. Berkooz, "Turbulence, Coherent Structures, Dynamical Systems and Symmetry,", volume II of Applied Mathematical Sciences, (1996).   Google Scholar

[10]

J. S. W. Lamb, k-symmetry and return maps of spacetime symmetric flows,, Nonlinearity, 11 (1998), 601.  doi: 10.1088/0951-7715/11/3/011.  Google Scholar

[11]

D. Liberzon, "On New Sufficient Conditions for Stability of Switched Linear Systems,", Proceedings of the 2009 European Control Conference, (2009).   Google Scholar

[12]

D. Liberzon, "Switching in Systems and Control,", Systems and Control: Foundations and Applications Birkhäuser, (2003).   Google Scholar

[13]

J. Lygeros, K. H. Johansson, S. N. Simic, J. Zhang and S. Sastry, Dynamical properties of Hybrid automata,, IEEE Transactions on Automatic Control, 48 (2003), 2.  doi: 10.1109/TAC.2002.806650.  Google Scholar

[14]

J. Lygeros, K. H. Johansson, S. Sastry and M. Egerstedt, On the existence of executions of Hybrid automata,, Proceedings of the 38$^{th}$ IEEE Conference on Decision and Control 1999, 3 (1999), 2249.   Google Scholar

[15]

S. N. Simic, K. H. Johansson, J. Lygeros and S. Sastry, Towards a geometric theory of Hybrid systems,, Dynamics of Continuous, 12 (2005), 649.   Google Scholar

[16]

A. van der Schaft and H. Schumacher, "An Introduction to Hybrid Dynamical Systems,", Number 251 in Lecture Notes in Control and Information Sciences Springer-Verlag, (2000).   Google Scholar

[1]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[2]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[3]

Yunfeng Geng, Xiaoying Wang, Frithjof Lutscher. Coexistence of competing consumers on a single resource in a hybrid model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 269-297. doi: 10.3934/dcdsb.2020140

[4]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[5]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[6]

Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122

[7]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

[8]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[9]

Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320

[10]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[11]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[12]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[13]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[14]

Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117

[15]

Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020054

[16]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[17]

Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315

[18]

Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313

[19]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[20]

Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021002

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (38)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]