July  2011, 16(1): 265-282. doi: 10.3934/dcdsb.2011.16.265

A rigorous derivation of hemitropy in nonlinearly elastic rods

1. 

Department of Mathematics and Department of Mechanical & Aerospace Engineering, Cornell University, Ithaca, NY, United States

Received  April 2010 Revised  September 2010 Published  April 2011

We consider a class of nonlinearly hyperelastic rods with helical symmetry, cf. [7]. Such a rod is mechanically invariant under the symmetries of a circular-cylindrical helix. Examples include idealized DNA molecules, wire ropes and cables. We examine the limit as the pitch of the helix characterizing the symmetry approaches zero and show that the resulting model is a hemitropic rod. The former is mechanically invariant under all proper rotations about its centerline and generally possesses chirality or handedness in its mechanical response, cf. [7]. An isotropic rod is also rotationally invariant but, in addition, enjoys certain reflection symmetries, which rule out chirality. Isotropy implies hemitropy, but the converse is not generally true. We employ both averaging methods and methods of gamma convergence to obtain the effective or homogenized (hemitropic) problem, the latter not corresponding to a naïve average.
Citation: Timothy J. Healey. A rigorous derivation of hemitropy in nonlinearly elastic rods. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 265-282. doi: 10.3934/dcdsb.2011.16.265
References:
[1]

S. S. Antman, "Problems of Nonlinear Elasticity,", Springer-Verlag, (2005).

[2]

J. M. Ball, Remarques sur l'existence et la régularité des solutions d'elatostatique non linéar,, Recent Contributions to Nonlinear Partial Differential Equations, (1981), 50.

[3]

A. Braides, "Gamma Convergence for Beginners,'', Oxford University Press, (2002). doi: 10.1093/acprof:oso/9780198507840.001.0001.

[4]

D. Cioranescu and P. Donato, "An Introduction to Homogenization,'', Oxford University Press, (2002).

[5]

B. Dacorogna, "Direct Methods in the Calculus of Variations,'', Springer-Verlag, (1989).

[6]

J. Guckenheimer and P. Holmes, "Nonlinear Oscillation, Dynamical Systems, and Bifurcations of Vector Fields,'', Springer-Verlag, (1983).

[7]

T. J. Healey, Material symmetry and chirality in nonlinearly elastic rods,, Math. Mech. Solids, 7 (2002), 405.

[8]

T. J. Healey and P. Mehta, Straightforward computation of spatial equilibria of geometrically exact Cosserat rods,, Int. J. Bifur.Chaos, 15 (2005), 949. doi: 10.1142/S0218127405012387.

[9]

J. Jost and X. Li-Jost, "Calculus of Variations,'', Cambridge University Press, (2008).

[10]

S. Kerhbaum and J. H. Maddocks, Effective properties of elastic rods with high intrinsic twist,, in M. Deville and R. Owens, (2000), 1.

[11]

S. Mudaliar, M. Eng. Report,, Cornell University, (2009).

[12]

R. T. Rockafellar, "Convex Analysis,'', Princeton University Press, (1970).

show all references

References:
[1]

S. S. Antman, "Problems of Nonlinear Elasticity,", Springer-Verlag, (2005).

[2]

J. M. Ball, Remarques sur l'existence et la régularité des solutions d'elatostatique non linéar,, Recent Contributions to Nonlinear Partial Differential Equations, (1981), 50.

[3]

A. Braides, "Gamma Convergence for Beginners,'', Oxford University Press, (2002). doi: 10.1093/acprof:oso/9780198507840.001.0001.

[4]

D. Cioranescu and P. Donato, "An Introduction to Homogenization,'', Oxford University Press, (2002).

[5]

B. Dacorogna, "Direct Methods in the Calculus of Variations,'', Springer-Verlag, (1989).

[6]

J. Guckenheimer and P. Holmes, "Nonlinear Oscillation, Dynamical Systems, and Bifurcations of Vector Fields,'', Springer-Verlag, (1983).

[7]

T. J. Healey, Material symmetry and chirality in nonlinearly elastic rods,, Math. Mech. Solids, 7 (2002), 405.

[8]

T. J. Healey and P. Mehta, Straightforward computation of spatial equilibria of geometrically exact Cosserat rods,, Int. J. Bifur.Chaos, 15 (2005), 949. doi: 10.1142/S0218127405012387.

[9]

J. Jost and X. Li-Jost, "Calculus of Variations,'', Cambridge University Press, (2008).

[10]

S. Kerhbaum and J. H. Maddocks, Effective properties of elastic rods with high intrinsic twist,, in M. Deville and R. Owens, (2000), 1.

[11]

S. Mudaliar, M. Eng. Report,, Cornell University, (2009).

[12]

R. T. Rockafellar, "Convex Analysis,'', Princeton University Press, (1970).

[1]

Jonatan Lenells. Traveling waves in compressible elastic rods. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 151-167. doi: 10.3934/dcdsb.2006.6.151

[2]

David L. Russell. Trace properties of certain damped linear elastic systems. Evolution Equations & Control Theory, 2013, 2 (4) : 711-721. doi: 10.3934/eect.2013.2.711

[3]

Mircea Bîrsan, Holm Altenbach. On the Cosserat model for thin rods made of thermoelastic materials with voids. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1473-1485. doi: 10.3934/dcdss.2013.6.1473

[4]

J. A. Barceló, M. Folch-Gabayet, S. Pérez-Esteva, A. Ruiz, M. C. Vilela. Elastic Herglotz functions in the plane. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1495-1505. doi: 10.3934/cpaa.2010.9.1495

[5]

Stuart S. Antman. Regularity properties of planar motions of incompressible rods. Discrete & Continuous Dynamical Systems - B, 2003, 3 (4) : 481-494. doi: 10.3934/dcdsb.2003.3.481

[6]

Zhijian Yang, Ke Li. Longtime dynamics for an elastic waveguide model. Conference Publications, 2013, 2013 (special) : 797-806. doi: 10.3934/proc.2013.2013.797

[7]

Kewei Zhang. On equality of relaxations for linear elastic strains. Communications on Pure & Applied Analysis, 2002, 1 (4) : 565-573. doi: 10.3934/cpaa.2002.1.565

[8]

Jun Guo, Qinghua Wu, Guozheng Yan. The factorization method for cracks in elastic scattering. Inverse Problems & Imaging, 2018, 12 (2) : 349-371. doi: 10.3934/ipi.2018016

[9]

Toyohiko Aiki. A free boundary problem for an elastic material. Conference Publications, 2007, 2007 (Special) : 10-17. doi: 10.3934/proc.2007.2007.10

[10]

Giovanni Alberti, Giuseppe Buttazzo, Serena Guarino Lo Bianco, Édouard Oudet. Optimal reinforcing networks for elastic membranes. Networks & Heterogeneous Media, 2019, 14 (3) : 589-615. doi: 10.3934/nhm.2019023

[11]

David Russell. Structural parameter optimization of linear elastic systems. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1517-1536. doi: 10.3934/cpaa.2011.10.1517

[12]

I. D. Chueshov. Interaction of an elastic plate with a linearized inviscid incompressible fluid. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1759-1778. doi: 10.3934/cpaa.2014.13.1759

[13]

Fei Meng, Xiao-Ping Yang. Elastic limit and vanishing external force for granular systems. Kinetic & Related Models, 2019, 12 (1) : 159-176. doi: 10.3934/krm.2019007

[14]

Nuno F. M. Martins. Detecting the localization of elastic inclusions and Lamé coefficients. Inverse Problems & Imaging, 2014, 8 (3) : 779-794. doi: 10.3934/ipi.2014.8.779

[15]

Lorena Bociu, Steven Derochers, Daniel Toundykov. Feedback stabilization of a linear hydro-elastic system. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1107-1132. doi: 10.3934/dcdsb.2018144

[16]

G. Idone, A. Maugeri. Variational inequalities and a transport planning for an elastic and continuum model. Journal of Industrial & Management Optimization, 2005, 1 (1) : 81-86. doi: 10.3934/jimo.2005.1.81

[17]

Martin Bauer, Martins Bruveris, Philipp Harms, Peter W. Michor. Soliton solutions for the elastic metric on spaces of curves. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1161-1185. doi: 10.3934/dcds.2018049

[18]

Elena Beretta, Eric Bonnetier, Elisa Francini, Anna L. Mazzucato. Small volume asymptotics for anisotropic elastic inclusions. Inverse Problems & Imaging, 2012, 6 (1) : 1-23. doi: 10.3934/ipi.2012.6.1

[19]

Maksym Berezhnyi, Evgen Khruslov. Non-standard dynamics of elastic composites. Networks & Heterogeneous Media, 2011, 6 (1) : 89-109. doi: 10.3934/nhm.2011.6.89

[20]

Minoru Murai, Waichiro Matsumoto, Shoji Yotsutani. Representation formula for the plane closed elastic curves. Conference Publications, 2013, 2013 (special) : 565-585. doi: 10.3934/proc.2013.2013.565

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]