-
Previous Article
Vanishing singularity in hard impacting systems
- DCDS-B Home
- This Issue
-
Next Article
A rigorous derivation of hemitropy in nonlinearly elastic rods
Feedback stabilization methods for the numerical solution of ordinary differential equations
1. | Department of Environmental Engineering, Technical University of Crete, 73100 Chania, Greece |
2. | Mathematisches Institute, Universität Bayreuth, 95440 Bayreuth |
References:
[1] |
Nonlinear Anal., 7 (1983), 1163-1173.
doi: 10.1016/0362-546X(83)90049-4. |
[2] |
Progress in Nonlinear Differential Equations and their Applications, 58, Birkhäuser Boston Inc., Boston, MA, 2004. |
[3] |
Math. Control Signals Systems, 19 (2007), 93-122.
doi: 10.1007/s00498-007-0014-8. |
[4] |
Birkhäuser, Boston, MA, 1996. |
[5] |
Discrete Contin. Dyn. Syst., 13 (2005), 827-841.
doi: 10.3934/dcds.2005.13.827. |
[6] |
SIAM J. Sci. Comput., 24 (2003), 1091-1106.
doi: 10.1137/S1064827501388157. |
[7] |
J. Comput. Phys., 187 (2003), 95-109.
doi: 10.1016/S0021-9991(03)00082-2. |
[8] |
Springer, Berlin, 2007. |
[9] |
J. Optim. Theory Appl., 92 (1997), 581-604.
doi: 10.1023/A:1022607507153. |
[10] |
BIT, 45 (2005), 709-723.
doi: 10.1007/s10543-005-0034-z. |
[11] |
Springer, Berlin, 2002. |
[12] |
SIAM J. Numer. Anal., 41 (2003), 2096-2113.
doi: 10.1137/S003614290139411X. |
[13] |
Syst. Control Lett., 38 (1999), 127-134. |
[14] |
ACM Trans. Math. Software, 17 (1991), 533-554.
doi: 10.1145/210232.210242. |
[15] |
ACM Trans. Math. Software, 20 (1994), 496-517.
doi: 10.1145/198429.198437. |
[16] |
BIT, 28 (1988), 270-287. |
[17] |
Springer, Berlin, second edition, 2006. |
[18] |
Springer, Berlin, second edition, 1993. |
[19] |
Springer, Berlin, second edition, 1996. |
[20] |
Math. Control Signals Systems, 7 (1994), 95-120.
doi: 10.1007/BF01211469. |
[21] |
IMA J. Math. Control Inform., 23 (2006), 11-41.
doi: 10.1093/imamci/dni037. |
[22] |
J. Math. Anal. Appl., 328 (2007), 876-899.
doi: 10.1016/j.jmaa.2006.05.059. |
[23] |
SIAM J. Control Optim., 46 (2007), 1483-1517.
doi: 10.1137/060669310. |
[24] |
In "Proceedings of the 48th IEEE Conference on Decision and Control,'' pages 7996-8001, Shanghai, China, 2009. Google Scholar |
[25] |
Prentice Hall, Upper Saddle River, third edition, 2002. |
[26] |
SIAM J. Numer. Anal., 23 (1986), 986-995.
doi: 10.1137/0723066. |
[27] |
Discrete Contin. Dynam. Systems, 2 (1996), 163-172.
doi: 10.3934/dcds.1996.2.163. |
[28] |
Marcel Dekker, New York, second edition, 2002. |
[29] |
BIT, 40 (2000), 314-335.
doi: 10.1023/A:1022395124683. |
[30] |
SIAM J. Control Optim., 34 (1996), 124-160.
doi: 10.1137/S0363012993259981. |
[31] |
IEEE Trans. Circuits Syst. I Regul. Pap., 52 (2005), 804-814.
doi: 10.1109/TCSI.2005.844366. |
[32] |
IEEE Trans. Automat. Control, 34 (1989), 435-443.
doi: 10.1109/9.28018. |
[33] |
Systems Control Lett., 13 (1989), 117-123. |
[34] |
Springer, New York, second edition, 1998. |
[35] |
Cambridge University Press, Cambridge, 1996. |
[36] |
Preprint, 2005. Google Scholar |
[37] |
IEEE Trans. Circuits Syst., 51 (2004), 1385-1394.
doi: 10.1109/TCSI.2004.830694. |
[38] |
Math. Programming, 18 (1980), 155-168.
doi: 10.1007/BF01588311. |
[39] |
Appl. Math. Comput., 184 (2007), 789-797.
doi: 10.1016/j.amc.2006.05.190. |
show all references
References:
[1] |
Nonlinear Anal., 7 (1983), 1163-1173.
doi: 10.1016/0362-546X(83)90049-4. |
[2] |
Progress in Nonlinear Differential Equations and their Applications, 58, Birkhäuser Boston Inc., Boston, MA, 2004. |
[3] |
Math. Control Signals Systems, 19 (2007), 93-122.
doi: 10.1007/s00498-007-0014-8. |
[4] |
Birkhäuser, Boston, MA, 1996. |
[5] |
Discrete Contin. Dyn. Syst., 13 (2005), 827-841.
doi: 10.3934/dcds.2005.13.827. |
[6] |
SIAM J. Sci. Comput., 24 (2003), 1091-1106.
doi: 10.1137/S1064827501388157. |
[7] |
J. Comput. Phys., 187 (2003), 95-109.
doi: 10.1016/S0021-9991(03)00082-2. |
[8] |
Springer, Berlin, 2007. |
[9] |
J. Optim. Theory Appl., 92 (1997), 581-604.
doi: 10.1023/A:1022607507153. |
[10] |
BIT, 45 (2005), 709-723.
doi: 10.1007/s10543-005-0034-z. |
[11] |
Springer, Berlin, 2002. |
[12] |
SIAM J. Numer. Anal., 41 (2003), 2096-2113.
doi: 10.1137/S003614290139411X. |
[13] |
Syst. Control Lett., 38 (1999), 127-134. |
[14] |
ACM Trans. Math. Software, 17 (1991), 533-554.
doi: 10.1145/210232.210242. |
[15] |
ACM Trans. Math. Software, 20 (1994), 496-517.
doi: 10.1145/198429.198437. |
[16] |
BIT, 28 (1988), 270-287. |
[17] |
Springer, Berlin, second edition, 2006. |
[18] |
Springer, Berlin, second edition, 1993. |
[19] |
Springer, Berlin, second edition, 1996. |
[20] |
Math. Control Signals Systems, 7 (1994), 95-120.
doi: 10.1007/BF01211469. |
[21] |
IMA J. Math. Control Inform., 23 (2006), 11-41.
doi: 10.1093/imamci/dni037. |
[22] |
J. Math. Anal. Appl., 328 (2007), 876-899.
doi: 10.1016/j.jmaa.2006.05.059. |
[23] |
SIAM J. Control Optim., 46 (2007), 1483-1517.
doi: 10.1137/060669310. |
[24] |
In "Proceedings of the 48th IEEE Conference on Decision and Control,'' pages 7996-8001, Shanghai, China, 2009. Google Scholar |
[25] |
Prentice Hall, Upper Saddle River, third edition, 2002. |
[26] |
SIAM J. Numer. Anal., 23 (1986), 986-995.
doi: 10.1137/0723066. |
[27] |
Discrete Contin. Dynam. Systems, 2 (1996), 163-172.
doi: 10.3934/dcds.1996.2.163. |
[28] |
Marcel Dekker, New York, second edition, 2002. |
[29] |
BIT, 40 (2000), 314-335.
doi: 10.1023/A:1022395124683. |
[30] |
SIAM J. Control Optim., 34 (1996), 124-160.
doi: 10.1137/S0363012993259981. |
[31] |
IEEE Trans. Circuits Syst. I Regul. Pap., 52 (2005), 804-814.
doi: 10.1109/TCSI.2005.844366. |
[32] |
IEEE Trans. Automat. Control, 34 (1989), 435-443.
doi: 10.1109/9.28018. |
[33] |
Systems Control Lett., 13 (1989), 117-123. |
[34] |
Springer, New York, second edition, 1998. |
[35] |
Cambridge University Press, Cambridge, 1996. |
[36] |
Preprint, 2005. Google Scholar |
[37] |
IEEE Trans. Circuits Syst., 51 (2004), 1385-1394.
doi: 10.1109/TCSI.2004.830694. |
[38] |
Math. Programming, 18 (1980), 155-168.
doi: 10.1007/BF01588311. |
[39] |
Appl. Math. Comput., 184 (2007), 789-797.
doi: 10.1016/j.amc.2006.05.190. |
[1] |
Wensheng Yin, Jinde Cao, Guoqiang Zheng. Further results on stabilization of stochastic differential equations with delayed feedback control under $ G $-expectation framework. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021072 |
[2] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[3] |
Benjamin Boutin, Frédéric Coquel, Philippe G. LeFloch. Coupling techniques for nonlinear hyperbolic equations. Ⅱ. resonant interfaces with internal structure. Networks & Heterogeneous Media, 2021, 16 (2) : 283-315. doi: 10.3934/nhm.2021007 |
[4] |
Imene Aicha Djebour, Takéo Takahashi, Julie Valein. Feedback stabilization of parabolic systems with input delay. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021027 |
[5] |
Xu Pan, Liangchen Wang. Boundedness and asymptotic stability in a quasilinear two-species chemotaxis system with nonlinear signal production. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021064 |
[6] |
Christophe Zhang. Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021006 |
[7] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[8] |
Tobias Breiten, Sergey Dolgov, Martin Stoll. Solving differential Riccati equations: A nonlinear space-time method using tensor trains. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 407-429. doi: 10.3934/naco.2020034 |
[9] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[10] |
Simone Fiori, Italo Cervigni, Mattia Ippoliti, Claudio Menotta. Synthetic nonlinear second-order oscillators on Riemannian manifolds and their numerical simulation. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021088 |
[11] |
Xiaohu Wang, Dingshi Li, Jun Shen. Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2829-2855. doi: 10.3934/dcdsb.2020207 |
[12] |
Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017 |
[13] |
Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021005 |
[14] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[15] |
Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203 |
[16] |
Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021066 |
[17] |
Yinsong Bai, Lin He, Huijiang Zhao. Nonlinear stability of rarefaction waves for a hyperbolic system with Cattaneo's law. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021049 |
[18] |
Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055 |
[19] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[20] |
Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]