July  2011, 16(1): 31-55. doi: 10.3934/dcdsb.2011.16.31

Existence of solution for a generalized stochastic Cahn-Hilliard equation on convex domains

1. 

Department of Applied Mathematics, University of Crete, Heraklion, Greece

2. 

Department of Applied Mathematics, University Crete, P.O. Box 2208, 71409, Heraklion, Crete, Greece

Received  April 2010 Revised  February 2011 Published  April 2011

We consider a generalized Stochastic Cahn-Hilliard equation with multiplicative white noise posed on bounded convex domains in $R^d$, $d=1,2,3$, with piece-wise smooth boundary, and introduce an additive time dependent white noise term in the chemical potential. Since the Green's function of the problem is induced by a convolution semigroup, we present the equation in a weak stochastic integral formulation and prove existence of solution when $d\leq 2$ for general domains, and for $d=3$ for domains with minimum eigenfunction growth, without making use of any explicit expression of the spectrum and the eigenfunctions. The analysis is based on stochastic integral calculus, Galerkin approximations and the asymptotic spectral properties of the Neumann Laplacian operator. Existence is also derived for some non-convex cases when the boundary is smooth.
Citation: Dimitra Antonopoulou, Georgia Karali. Existence of solution for a generalized stochastic Cahn-Hilliard equation on convex domains. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 31-55. doi: 10.3934/dcdsb.2011.16.31
References:
[1]

R. A. Adams, "Sobolev Spaces,", Academic Press, (1993).   Google Scholar

[2]

N. D. Alikakos, P. W. Bates and X. Chen, Convergence of the Cahn-Hilliard equation to the Hele-Shaw model,, Arch. Rat. Mech. Anal., 128 (1994), 165.  doi: 10.1007/BF00375025.  Google Scholar

[3]

N. D. Alikakos, G. Fusco and G. Karali, The effect of the geometry of the particle distribution in Ostwald Ripening,, Comm. Math. Phys., 238 (2003), 480.  doi: 10.1007/s00220-003-0834-4.  Google Scholar

[4]

N. D. Alikakos, G. Fusco and G. Karali, Ostwald Ripening in two dimensions - The rigorous derivation of the equations from the Mullins-Sekerka dynamics,, J. Differential Equations 205, 1 (2004), 1.   Google Scholar

[5]

T. Antal, M. Droz, J. Magnin and Z. Rácz, Formation of Liesengang patterns: A spinodal decomposition scenarion,, Phys. Rev. Lett., 83 (1999), 2880.  doi: 10.1103/PhysRevLett.83.2880.  Google Scholar

[6]

D. C. Antonopoulou, G. D. Karali and G. T. Kossioris, Asymptotics for a generalized Cahn-Hilliard equation with forcing terms,, to appear in Discrete and Cont. Dyn. Syst. A., ().   Google Scholar

[7]

L. Arnold, "Stochastic Differential Equations: Theory and Applications,", Wiley and Sons, (1974).   Google Scholar

[8]

P. W. Bates and P. C. Fife, The dynamics of nucleation for the Cahn-Hilliard,, SIAM J. Appl. Math., 53 (1993), 990.  doi: 10.1137/0153049.  Google Scholar

[9]

G. Belletini, M. S. Gelli, S. Luckhaus and M. Novaga, Deterministic equivalent for the Allen Cahn energy of a scaling law in the Ising model,, Calc. Var., 26 (2006), 429.  doi: 10.1007/s00526-006-0012-6.  Google Scholar

[10]

J. M. Berezanskii, "Expansions in Eigenfunctions of Selfadjoint Operators,", Translations of Mathematical Monographs, (1968).   Google Scholar

[11]

D. Blömker, S. Maier-Paape and T. Wanner, Spinodal decomposition for the Cahn-Hilliard-Cook equation,, Communications in Mathematical Physics, 3 (2001), 553.   Google Scholar

[12]

D. Blömker, S. Maier-Paape and T. Wanner, Phase separation in stochastic Cahn-Hilliard models,, Mathematical Methods and Models in Phase Transitions (2005), (2005), 1.   Google Scholar

[13]

S. C. Brenner and L. R. Scott, "The Mathematical Theory of Finite Element Methods,", Springer-Verlag, (1994).   Google Scholar

[14]

J. W. Cahn, On spinodal decomposition,, Acta Metallurgica, 9 (1961), 795.  doi: 10.1016/0001-6160(61)90182-1.  Google Scholar

[15]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy,, J. Chem. Phys., 28 (1958), 258.  doi: 10.1063/1.1744102.  Google Scholar

[16]

C. Cardon-Weber, Cahn-Hilliard stochastic equation: Existence of the solution and of its density,, Bernoulli, 5 (2001), 777.  doi: 10.2307/3318542.  Google Scholar

[17]

C. Cardon-Weber, Cahn-Hilliard stochastic equation: Strict positivity of the density,, Stoch. Stoch. Rep., 72 (2002), 191.   Google Scholar

[18]

H. Cook, Brownian motion in spinodal decomposition,, Acta Metallurgica, 18 (1970), 297.  doi: 10.1016/0001-6160(70)90144-6.  Google Scholar

[19]

R. Courant and D. Hilbert, "Methods of Mathematical Physics,", Vol. \textbf{1}, 1 (1953).   Google Scholar

[20]

G. Da Prato and A. Debussche, Stochastic Cahn-Hilliard equation,, Nonlin. Anal. Th. Meth. Appl., 26 (1996), 241.  doi: 10.1016/0362-546X(94)00277-O.  Google Scholar

[21]

A. Debussche and L. Dettori, On the Cahn-Hilliard equation with logarithmic free energy,, Nonlin. Anal. Th. Meth. Appl., 24 (1995), 1491.  doi: 10.1016/0362-546X(94)00205-V.  Google Scholar

[22]

A. Debussche and L. Goudenège, Stochastic Cahn-Hilliard equation with double singular nonlinearities and two reflections,, Prepublication - IRMAR, 29 (2009).   Google Scholar

[23]

A. Debussche and L. Zambotti, Conservative stochastic Cahn-Hilliard equation with reflection,, Ann. Probab., 35 (2007), 1706.  doi: 10.1214/009117906000000773.  Google Scholar

[24]

J. J. Duistermaat and V. W. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics,, Invent. Math., 29 (1975), 39.  doi: 10.1007/BF01405172.  Google Scholar

[25]

S. D. Eidelman and N. V. Ivasisen, Investigation of the green matrix for homogeneous parabolic boundary value problem,, Trans. Moscow. Math. Soc., 23 (1970), 179.   Google Scholar

[26]

N. Elezovic and A. Mikelic, On the stochastic Cahn-Hilliard equation,, Nonlinear Anal., 16 (1991), 1169.  doi: 10.1016/0362-546X(91)90204-E.  Google Scholar

[27]

C. M. Elliott and S. Zheng, On the Cahn-Hilliard equation,, Arch. Rational Mech. Anal., 96 (1986), 339.  doi: 10.1007/BF00251803.  Google Scholar

[28]

L. C. Evans, "Partial Differential Equations,", American Mathematical Society, (1998).   Google Scholar

[29]

P. C. Fife, "Dynamical Aspects of the Cahn-Hilliard Equations,", Barret Lectures, (1991).   Google Scholar

[30]

P. C. Fife, Models for phase separation and their mathematics,, El. Journ. Diff. E., 48 (2000), 1.   Google Scholar

[31]

A. Garsia, Continuity properties of Gaussian process with multi-dimensional time parameter,, Proc. Sixth Berkeley Symp. Math. Stat. Probab., (1972), 369.   Google Scholar

[32]

L. Goudenège, Stochastic Cahn-Hilliard equation with singular nonlinearity and reflection,, Stochastic Processes and their Applications, 119 (2009), 3516.  doi: 10.1016/j.spa.2009.06.008.  Google Scholar

[33]

M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance,, Physica D, 92 (1996), 178.  doi: 10.1016/0167-2789(95)00173-5.  Google Scholar

[34]

A. Hassell, "Eigenvalues and Eigenfunctions of the Laplacian,", Lecture notes, ().   Google Scholar

[35]

M. Hildebrand and A. S. Mikhailov, Mesoscopic modeling in the kinetic theory of adsorbates,, J. Phys. Chem., 100 (1996), 19089.  doi: 10.1021/jp961668w.  Google Scholar

[36]

P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena,, Rev. mod. Phys., 49 (1977), 435.  doi: 10.1103/RevModPhys.49.435.  Google Scholar

[37]

G. Karali, Phase boundaries motion preserving the volume of each connected component,, Asymptotic Analysis, 49 (2006), 17.   Google Scholar

[38]

G. Karali and M. A. Katsoulakis, The role of multiple microscopic mechanisms in cluster interface evolution,, J. Differential Equations, 235 (2007), 418.   Google Scholar

[39]

M. A. Katsoulakis and D. G. Vlachos, From microscopic interactions to macroscopic laws of cluster evolution,, Phys. Rev. Letters, 84 (2000), 1511.  doi: 10.1103/PhysRevLett.84.1511.  Google Scholar

[40]

K. Kitahara, Y. Oono and D. Jasnow, Phase separation dynamics and external force field,, Mod. Phys. Letters B, 2 (1988), 765.  doi: 10.1142/S0217984988000461.  Google Scholar

[41]

P. Kröger, Upper bounds for the Neumann eigenvalues on a bounded domain in Euclidean space,, J. Funct. Anal., 106 (1992), 353.  doi: 10.1016/0022-1236(92)90052-K.  Google Scholar

[42]

J. S. Langer, Theory of spinodal decomposition in alloys,, Annals of Physics, 65 (1971), 53.  doi: 10.1016/0003-4916(71)90162-X.  Google Scholar

[43]

S. Maier-Paape, U. Miller, K. Mischaikow and T. Wanner, Rigorous numerics for the Cahn-Hilliard equation on the unit square,, Rev. Mat. Complut., 21 (2008), 351.   Google Scholar

[44]

B. Øksendal, "Stochastic Differential Equations,", Springer, (2003).   Google Scholar

[45]

R. L. Pego, Front migration in the non-linear Cahn-Hilliard equation,, Proc. R. Soc. Lond. A, 422 (1989), 261.  doi: 10.1098/rspa.1989.0027.  Google Scholar

[46]

P. E. Protter, "Stochastic Integration and Differential Equations,", Springer-Verlag Berlin Heidelberg, (2005).   Google Scholar

[47]

S. Semmes, Some aspects of calculus on non-smooth sets,, \arXiv{0709.2508v3}, (2007).   Google Scholar

[48]

J. B. Walsh, An introduction to stochastic partial differential equations,, 265-439, (1180), 265.   Google Scholar

[49]

H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen,, Math. Ann., 71 (1911), 441.  doi: 10.1007/BF01456804.  Google Scholar

show all references

References:
[1]

R. A. Adams, "Sobolev Spaces,", Academic Press, (1993).   Google Scholar

[2]

N. D. Alikakos, P. W. Bates and X. Chen, Convergence of the Cahn-Hilliard equation to the Hele-Shaw model,, Arch. Rat. Mech. Anal., 128 (1994), 165.  doi: 10.1007/BF00375025.  Google Scholar

[3]

N. D. Alikakos, G. Fusco and G. Karali, The effect of the geometry of the particle distribution in Ostwald Ripening,, Comm. Math. Phys., 238 (2003), 480.  doi: 10.1007/s00220-003-0834-4.  Google Scholar

[4]

N. D. Alikakos, G. Fusco and G. Karali, Ostwald Ripening in two dimensions - The rigorous derivation of the equations from the Mullins-Sekerka dynamics,, J. Differential Equations 205, 1 (2004), 1.   Google Scholar

[5]

T. Antal, M. Droz, J. Magnin and Z. Rácz, Formation of Liesengang patterns: A spinodal decomposition scenarion,, Phys. Rev. Lett., 83 (1999), 2880.  doi: 10.1103/PhysRevLett.83.2880.  Google Scholar

[6]

D. C. Antonopoulou, G. D. Karali and G. T. Kossioris, Asymptotics for a generalized Cahn-Hilliard equation with forcing terms,, to appear in Discrete and Cont. Dyn. Syst. A., ().   Google Scholar

[7]

L. Arnold, "Stochastic Differential Equations: Theory and Applications,", Wiley and Sons, (1974).   Google Scholar

[8]

P. W. Bates and P. C. Fife, The dynamics of nucleation for the Cahn-Hilliard,, SIAM J. Appl. Math., 53 (1993), 990.  doi: 10.1137/0153049.  Google Scholar

[9]

G. Belletini, M. S. Gelli, S. Luckhaus and M. Novaga, Deterministic equivalent for the Allen Cahn energy of a scaling law in the Ising model,, Calc. Var., 26 (2006), 429.  doi: 10.1007/s00526-006-0012-6.  Google Scholar

[10]

J. M. Berezanskii, "Expansions in Eigenfunctions of Selfadjoint Operators,", Translations of Mathematical Monographs, (1968).   Google Scholar

[11]

D. Blömker, S. Maier-Paape and T. Wanner, Spinodal decomposition for the Cahn-Hilliard-Cook equation,, Communications in Mathematical Physics, 3 (2001), 553.   Google Scholar

[12]

D. Blömker, S. Maier-Paape and T. Wanner, Phase separation in stochastic Cahn-Hilliard models,, Mathematical Methods and Models in Phase Transitions (2005), (2005), 1.   Google Scholar

[13]

S. C. Brenner and L. R. Scott, "The Mathematical Theory of Finite Element Methods,", Springer-Verlag, (1994).   Google Scholar

[14]

J. W. Cahn, On spinodal decomposition,, Acta Metallurgica, 9 (1961), 795.  doi: 10.1016/0001-6160(61)90182-1.  Google Scholar

[15]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy,, J. Chem. Phys., 28 (1958), 258.  doi: 10.1063/1.1744102.  Google Scholar

[16]

C. Cardon-Weber, Cahn-Hilliard stochastic equation: Existence of the solution and of its density,, Bernoulli, 5 (2001), 777.  doi: 10.2307/3318542.  Google Scholar

[17]

C. Cardon-Weber, Cahn-Hilliard stochastic equation: Strict positivity of the density,, Stoch. Stoch. Rep., 72 (2002), 191.   Google Scholar

[18]

H. Cook, Brownian motion in spinodal decomposition,, Acta Metallurgica, 18 (1970), 297.  doi: 10.1016/0001-6160(70)90144-6.  Google Scholar

[19]

R. Courant and D. Hilbert, "Methods of Mathematical Physics,", Vol. \textbf{1}, 1 (1953).   Google Scholar

[20]

G. Da Prato and A. Debussche, Stochastic Cahn-Hilliard equation,, Nonlin. Anal. Th. Meth. Appl., 26 (1996), 241.  doi: 10.1016/0362-546X(94)00277-O.  Google Scholar

[21]

A. Debussche and L. Dettori, On the Cahn-Hilliard equation with logarithmic free energy,, Nonlin. Anal. Th. Meth. Appl., 24 (1995), 1491.  doi: 10.1016/0362-546X(94)00205-V.  Google Scholar

[22]

A. Debussche and L. Goudenège, Stochastic Cahn-Hilliard equation with double singular nonlinearities and two reflections,, Prepublication - IRMAR, 29 (2009).   Google Scholar

[23]

A. Debussche and L. Zambotti, Conservative stochastic Cahn-Hilliard equation with reflection,, Ann. Probab., 35 (2007), 1706.  doi: 10.1214/009117906000000773.  Google Scholar

[24]

J. J. Duistermaat and V. W. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics,, Invent. Math., 29 (1975), 39.  doi: 10.1007/BF01405172.  Google Scholar

[25]

S. D. Eidelman and N. V. Ivasisen, Investigation of the green matrix for homogeneous parabolic boundary value problem,, Trans. Moscow. Math. Soc., 23 (1970), 179.   Google Scholar

[26]

N. Elezovic and A. Mikelic, On the stochastic Cahn-Hilliard equation,, Nonlinear Anal., 16 (1991), 1169.  doi: 10.1016/0362-546X(91)90204-E.  Google Scholar

[27]

C. M. Elliott and S. Zheng, On the Cahn-Hilliard equation,, Arch. Rational Mech. Anal., 96 (1986), 339.  doi: 10.1007/BF00251803.  Google Scholar

[28]

L. C. Evans, "Partial Differential Equations,", American Mathematical Society, (1998).   Google Scholar

[29]

P. C. Fife, "Dynamical Aspects of the Cahn-Hilliard Equations,", Barret Lectures, (1991).   Google Scholar

[30]

P. C. Fife, Models for phase separation and their mathematics,, El. Journ. Diff. E., 48 (2000), 1.   Google Scholar

[31]

A. Garsia, Continuity properties of Gaussian process with multi-dimensional time parameter,, Proc. Sixth Berkeley Symp. Math. Stat. Probab., (1972), 369.   Google Scholar

[32]

L. Goudenège, Stochastic Cahn-Hilliard equation with singular nonlinearity and reflection,, Stochastic Processes and their Applications, 119 (2009), 3516.  doi: 10.1016/j.spa.2009.06.008.  Google Scholar

[33]

M. E. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance,, Physica D, 92 (1996), 178.  doi: 10.1016/0167-2789(95)00173-5.  Google Scholar

[34]

A. Hassell, "Eigenvalues and Eigenfunctions of the Laplacian,", Lecture notes, ().   Google Scholar

[35]

M. Hildebrand and A. S. Mikhailov, Mesoscopic modeling in the kinetic theory of adsorbates,, J. Phys. Chem., 100 (1996), 19089.  doi: 10.1021/jp961668w.  Google Scholar

[36]

P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena,, Rev. mod. Phys., 49 (1977), 435.  doi: 10.1103/RevModPhys.49.435.  Google Scholar

[37]

G. Karali, Phase boundaries motion preserving the volume of each connected component,, Asymptotic Analysis, 49 (2006), 17.   Google Scholar

[38]

G. Karali and M. A. Katsoulakis, The role of multiple microscopic mechanisms in cluster interface evolution,, J. Differential Equations, 235 (2007), 418.   Google Scholar

[39]

M. A. Katsoulakis and D. G. Vlachos, From microscopic interactions to macroscopic laws of cluster evolution,, Phys. Rev. Letters, 84 (2000), 1511.  doi: 10.1103/PhysRevLett.84.1511.  Google Scholar

[40]

K. Kitahara, Y. Oono and D. Jasnow, Phase separation dynamics and external force field,, Mod. Phys. Letters B, 2 (1988), 765.  doi: 10.1142/S0217984988000461.  Google Scholar

[41]

P. Kröger, Upper bounds for the Neumann eigenvalues on a bounded domain in Euclidean space,, J. Funct. Anal., 106 (1992), 353.  doi: 10.1016/0022-1236(92)90052-K.  Google Scholar

[42]

J. S. Langer, Theory of spinodal decomposition in alloys,, Annals of Physics, 65 (1971), 53.  doi: 10.1016/0003-4916(71)90162-X.  Google Scholar

[43]

S. Maier-Paape, U. Miller, K. Mischaikow and T. Wanner, Rigorous numerics for the Cahn-Hilliard equation on the unit square,, Rev. Mat. Complut., 21 (2008), 351.   Google Scholar

[44]

B. Øksendal, "Stochastic Differential Equations,", Springer, (2003).   Google Scholar

[45]

R. L. Pego, Front migration in the non-linear Cahn-Hilliard equation,, Proc. R. Soc. Lond. A, 422 (1989), 261.  doi: 10.1098/rspa.1989.0027.  Google Scholar

[46]

P. E. Protter, "Stochastic Integration and Differential Equations,", Springer-Verlag Berlin Heidelberg, (2005).   Google Scholar

[47]

S. Semmes, Some aspects of calculus on non-smooth sets,, \arXiv{0709.2508v3}, (2007).   Google Scholar

[48]

J. B. Walsh, An introduction to stochastic partial differential equations,, 265-439, (1180), 265.   Google Scholar

[49]

H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen,, Math. Ann., 71 (1911), 441.  doi: 10.1007/BF01456804.  Google Scholar

[1]

Georgios T. Kossioris, Georgios E. Zouraris. Finite element approximations for a linear Cahn-Hilliard-Cook equation driven by the space derivative of a space-time white noise. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1845-1872. doi: 10.3934/dcdsb.2013.18.1845

[2]

Yanzhao Cao, Li Yin. Spectral Galerkin method for stochastic wave equations driven by space-time white noise. Communications on Pure & Applied Analysis, 2007, 6 (3) : 607-617. doi: 10.3934/cpaa.2007.6.607

[3]

Ying Hu, Shanjian Tang. Nonlinear backward stochastic evolutionary equations driven by a space-time white noise. Mathematical Control & Related Fields, 2018, 8 (3&4) : 739-751. doi: 10.3934/mcrf.2018032

[4]

Andreas C. Aristotelous, Ohannes Karakashian, Steven M. Wise. A mixed discontinuous Galerkin, convex splitting scheme for a modified Cahn-Hilliard equation and an efficient nonlinear multigrid solver. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2211-2238. doi: 10.3934/dcdsb.2013.18.2211

[5]

Jie Shen, Xiaofeng Yang. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1669-1691. doi: 10.3934/dcds.2010.28.1669

[6]

Min Niu, Bin Xie. Comparison theorem and correlation for stochastic heat equations driven by Lévy space-time white noises. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 2989-3009. doi: 10.3934/dcdsb.2018296

[7]

Luis J. Roman, Marcus Sarkis. Stochastic Galerkin method for elliptic spdes: A white noise approach. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 941-955. doi: 10.3934/dcdsb.2006.6.941

[8]

Tianlong Shen, Jianhua Huang, Caibin Zeng. Time fractional and space nonlocal stochastic boussinesq equations driven by gaussian white noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1523-1533. doi: 10.3934/dcdsb.2018056

[9]

Henri Schurz. Stochastic heat equations with cubic nonlinearity and additive space-time noise in 2D. Conference Publications, 2013, 2013 (special) : 673-684. doi: 10.3934/proc.2013.2013.673

[10]

Henri Schurz. Analysis and discretization of semi-linear stochastic wave equations with cubic nonlinearity and additive space-time noise. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 353-363. doi: 10.3934/dcdss.2008.1.353

[11]

Yuming Zhang. On continuity equations in space-time domains. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4837-4873. doi: 10.3934/dcds.2018212

[12]

Dirk Blömker, Bernhard Gawron, Thomas Wanner. Nucleation in the one-dimensional stochastic Cahn-Hilliard model. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 25-52. doi: 10.3934/dcds.2010.27.25

[13]

Annalisa Iuorio, Stefano Melchionna. Long-time behavior of a nonlocal Cahn-Hilliard equation with reaction. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3765-3788. doi: 10.3934/dcds.2018163

[14]

Chaoxu Pei, Mark Sussman, M. Yousuff Hussaini. A space-time discontinuous Galerkin spectral element method for the Stefan problem. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3595-3622. doi: 10.3934/dcdsb.2017216

[15]

Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations & Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012

[16]

Ahmad Makki, Alain Miranville. Existence of solutions for anisotropic Cahn-Hilliard and Allen-Cahn systems in higher space dimensions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 759-775. doi: 10.3934/dcdss.2016027

[17]

Wen-ming He, Jun-zhi Cui. The estimate of the multi-scale homogenization method for Green's function on Sobolev space $W^{1,q}(\Omega)$. Communications on Pure & Applied Analysis, 2012, 11 (2) : 501-516. doi: 10.3934/cpaa.2012.11.501

[18]

Xinlong Feng, Yinnian He. On uniform in time $H^2$-regularity of the solution for the 2D Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5387-5400. doi: 10.3934/dcds.2016037

[19]

Jan Prüss, Vicente Vergara, Rico Zacher. Well-posedness and long-time behaviour for the non-isothermal Cahn-Hilliard equation with memory. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 625-647. doi: 10.3934/dcds.2010.26.625

[20]

Maurizio Grasselli, Nicolas Lecoq, Morgan Pierre. A long-time stable fully discrete approximation of the Cahn-Hilliard equation with inertial term. Conference Publications, 2011, 2011 (Special) : 543-552. doi: 10.3934/proc.2011.2011.543

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]