July  2011, 16(1): 319-332. doi: 10.3934/dcdsb.2011.16.319

Vanishing singularity in hard impacting systems

1. 

Electrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, United States

2. 

Department of Physical Sciences, Indian Institute of Science Education & Research, Mohanpur-741252, Nadia, West Bengal, India

3. 

School of Electrical, Electronic and Computer Engineering, Newcastle University, NE1 7RU, England, United Kingdom

Received  February 2010 Revised  June 2010 Published  April 2011

It is known that the Jacobian of the discrete-time map of an impact oscillator in the neighborhood of a grazing orbit depends on the square-root of the distance the mass would have gone beyond the position of the wall if the wall were not there. This results in an infinite stretching of the phase space, known as the square-root singularity. In this paper we look closer into the Jacobian matrix and find out the behavior of its two parameters---the trace and the determinant, across the grazing event. We show that the determinant of the matrix remains invariant in the neighborhood of a grazing orbit, and that the singularity appears only in the trace of the matrix. Investigating the character of the trace, we show that the singularity disappears if the damped frequency of the oscillator is an integral multiple of half of the forcing frequency.
Citation: Soumya Kundu, Soumitro Banerjee, Damian Giaouris. Vanishing singularity in hard impacting systems. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 319-332. doi: 10.3934/dcdsb.2011.16.319
References:
[1]

S. W. Shaw and P. J. Holmes, A periodically forced piecewise linear oscillator,, Journal of Sound & Vibration, 90 (1983), 129.  doi: 10.1016/0022-460X(83)90407-8.  Google Scholar

[2]

F. Peterka and J. Vacik, Transition to chaotic motion in mechanical systems with impacts,, Journal of Sound and Vibration, 154 (1992), 95.  doi: 10.1016/0022-460X(92)90406-N.  Google Scholar

[3]

B. Blazejczyk-Okolewska and T. Kapitaniak, Co-existing attractors of impact oscillator,, Chaos, 9 (1998), 1439.  doi: 10.1016/S0960-0779(98)00164-7.  Google Scholar

[4]

S. Lenci and G. Rega, A procedure for reducing the chaotic response region in an impact mechanical system,, Nonlinear Dynamics, 15 (1998), 391.  doi: 10.1023/A:1008209513877.  Google Scholar

[5]

D. J. Wagg, G. Karpodinis and S. R. Bishop, An experimental study of the impulse response of a vibro-impacting cantilever beam,, Journal of Sound & Vibration, 228 (1999), 243.  doi: 10.1006/jsvi.1999.2318.  Google Scholar

[6]

E. K. Ervin and J. A. Wickert, Experiments on a beam-rigid body structure repetitively impacting a rod,, Nonlinear Dynamics, 50 (2007), 701.  doi: 10.1007/s11071-006-9180-3.  Google Scholar

[7]

J. Ing, E. Pavlovskaia and M. Wiercigroch, An experimental study into the bilinear oscillator close to grazing,, In, 96 (2007).   Google Scholar

[8]

A. B. Nordmark, Non-periodic motion caused by grazing incidence in an impact oscillator,, Journal of Sound and Vibration, 145 (1991), 279.  doi: 10.1016/0022-460X(91)90592-8.  Google Scholar

[9]

A. B. Nordmark, Universal limit mapping in grazing bifurcations,, Phys. Rev. E, 55 (1997), 266.  doi: 10.1103/PhysRevE.55.266.  Google Scholar

[10]

M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, "Piecewise-smooth Dynamical Systems: Theory and Applications,", Springer Verlag (Applied Mathematical Sciences), (2008).   Google Scholar

[11]

Y. Ma, M. Agarwal and S. Banerjee, Border collision bifurcations in a soft impact system,, Physics Letters A, 354 (2006), 281.  doi: 10.1016/j.physleta.2006.01.025.  Google Scholar

[12]

Y. Ma, J. Ing, S. Banerjee, M. Wiercigroch and E. Pavlovskaia, The nature of the normal form map for soft impacting systems,, International Journal of Nonlinear Mechanics, 43 (2008), 504.  doi: 10.1016/j.ijnonlinmec.2008.04.001.  Google Scholar

[13]

J. Ing, E. Pavlovskaia, M. Wiercigroch and S. Banerjee, Experimental study of impact oscillator with one-sided elastic constraint,, Philosophical Transactions of the Royal Society of London, 366 (2008), 679.   Google Scholar

[14]

R. I. Leine and H. Nijmeijer, "Dynamics and Bifurcations in Non-Smooth Mechanical Systems,", Springer Verlag, (2004).   Google Scholar

[15]

S. Banerjee and C. Grebogi, Border collision bifurcations in two-dimensional piecewise smooth maps,, Physical Review E, 59 (1999), 4052.  doi: 10.1103/PhysRevE.59.4052.  Google Scholar

[16]

S. Banerjee, P. Ranjan and C. Grebogi, Bifurcations in two-dimensional piecewise smooth maps -- theory and applications in switching circuits,, IEEE Transactions on Circuits and Systems-I, 47 (2000), 633.  doi: 10.1109/81.847870.  Google Scholar

[17]

H. Dankowicz and F. Svahn, On the stabilizability of near-grazing dynamics in impact oscillators,, Int. J. Robust & Nonlinear Control, 17 (2007), 1405.  doi: 10.1002/rnc.1252.  Google Scholar

show all references

References:
[1]

S. W. Shaw and P. J. Holmes, A periodically forced piecewise linear oscillator,, Journal of Sound & Vibration, 90 (1983), 129.  doi: 10.1016/0022-460X(83)90407-8.  Google Scholar

[2]

F. Peterka and J. Vacik, Transition to chaotic motion in mechanical systems with impacts,, Journal of Sound and Vibration, 154 (1992), 95.  doi: 10.1016/0022-460X(92)90406-N.  Google Scholar

[3]

B. Blazejczyk-Okolewska and T. Kapitaniak, Co-existing attractors of impact oscillator,, Chaos, 9 (1998), 1439.  doi: 10.1016/S0960-0779(98)00164-7.  Google Scholar

[4]

S. Lenci and G. Rega, A procedure for reducing the chaotic response region in an impact mechanical system,, Nonlinear Dynamics, 15 (1998), 391.  doi: 10.1023/A:1008209513877.  Google Scholar

[5]

D. J. Wagg, G. Karpodinis and S. R. Bishop, An experimental study of the impulse response of a vibro-impacting cantilever beam,, Journal of Sound & Vibration, 228 (1999), 243.  doi: 10.1006/jsvi.1999.2318.  Google Scholar

[6]

E. K. Ervin and J. A. Wickert, Experiments on a beam-rigid body structure repetitively impacting a rod,, Nonlinear Dynamics, 50 (2007), 701.  doi: 10.1007/s11071-006-9180-3.  Google Scholar

[7]

J. Ing, E. Pavlovskaia and M. Wiercigroch, An experimental study into the bilinear oscillator close to grazing,, In, 96 (2007).   Google Scholar

[8]

A. B. Nordmark, Non-periodic motion caused by grazing incidence in an impact oscillator,, Journal of Sound and Vibration, 145 (1991), 279.  doi: 10.1016/0022-460X(91)90592-8.  Google Scholar

[9]

A. B. Nordmark, Universal limit mapping in grazing bifurcations,, Phys. Rev. E, 55 (1997), 266.  doi: 10.1103/PhysRevE.55.266.  Google Scholar

[10]

M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, "Piecewise-smooth Dynamical Systems: Theory and Applications,", Springer Verlag (Applied Mathematical Sciences), (2008).   Google Scholar

[11]

Y. Ma, M. Agarwal and S. Banerjee, Border collision bifurcations in a soft impact system,, Physics Letters A, 354 (2006), 281.  doi: 10.1016/j.physleta.2006.01.025.  Google Scholar

[12]

Y. Ma, J. Ing, S. Banerjee, M. Wiercigroch and E. Pavlovskaia, The nature of the normal form map for soft impacting systems,, International Journal of Nonlinear Mechanics, 43 (2008), 504.  doi: 10.1016/j.ijnonlinmec.2008.04.001.  Google Scholar

[13]

J. Ing, E. Pavlovskaia, M. Wiercigroch and S. Banerjee, Experimental study of impact oscillator with one-sided elastic constraint,, Philosophical Transactions of the Royal Society of London, 366 (2008), 679.   Google Scholar

[14]

R. I. Leine and H. Nijmeijer, "Dynamics and Bifurcations in Non-Smooth Mechanical Systems,", Springer Verlag, (2004).   Google Scholar

[15]

S. Banerjee and C. Grebogi, Border collision bifurcations in two-dimensional piecewise smooth maps,, Physical Review E, 59 (1999), 4052.  doi: 10.1103/PhysRevE.59.4052.  Google Scholar

[16]

S. Banerjee, P. Ranjan and C. Grebogi, Bifurcations in two-dimensional piecewise smooth maps -- theory and applications in switching circuits,, IEEE Transactions on Circuits and Systems-I, 47 (2000), 633.  doi: 10.1109/81.847870.  Google Scholar

[17]

H. Dankowicz and F. Svahn, On the stabilizability of near-grazing dynamics in impact oscillators,, Int. J. Robust & Nonlinear Control, 17 (2007), 1405.  doi: 10.1002/rnc.1252.  Google Scholar

[1]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[2]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[3]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[4]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[5]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[6]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[7]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[8]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[9]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[10]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[11]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[12]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[13]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[14]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[15]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[16]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[17]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (12)

[Back to Top]