July  2011, 16(1): 333-344. doi: 10.3934/dcdsb.2011.16.333

On a quasilinear hyperbolic system in blood flow modeling

1. 

Department of Mathematics, University of Iowa, Iowa City, IA 52242, United States

2. 

Mathematical Biosciences Institute, Ohio State University, Columbus, OH 43210, United States

Received  April 2010 Revised  September 2010 Published  April 2011

This paper aims at an initial-boundary value problem on bounded domains for a one-dimensional quasilinear hyperbolic model of blood flow with viscous damping. It is shown that, for given smooth initial data close to a constant equilibrium state, there exists a unique global smooth solution to the model. Time asymptotically, it is shown that the solution converges to the constant equilibrium state exponentially fast as time goes to infinity due to viscous damping and boundary effects.
Citation: Tong Li, Kun Zhao. On a quasilinear hyperbolic system in blood flow modeling. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 333-344. doi: 10.3934/dcdsb.2011.16.333
References:
[1]

M. Anliker, R. L. Rockwell and E. Ogden, Nonlinear analysis of flow pulses and shock waves in arteries, Part I: Derivation and properties of mathematical model,, Z. Angew. Math. Phys., 22 (1971), 217.  doi: 10.1007/BF01591407.  Google Scholar

[2]

A. C. L. Barnard, W. A. Hunt, W. P. Timlake and E. Varley, A theory of fluid flow in compliant tubes,, Biophysical J., 6 (1966), 717.  doi: 10.1016/S0006-3495(66)86690-0.  Google Scholar

[3]

S. Čanić, Blood flow through compliant vessels after endovascular repair: Wall deformations induced by the discontinuous wall properties,, Comput. Visual. Sci., 4 (2002), 147.  doi: 10.1126/science.4.83.147.  Google Scholar

[4]

S. Čanić and E. H. Kim, Mathematical analysis of the quasilinear effects in a hyperbolic model blood flow through compliant axi-symmetric vessels,, Math. Methods Appl. Sci., 26 (2003), 1161.  doi: 10.1002/mma.407.  Google Scholar

[5]

S. Čanić, D. Lamponi, A. Mikelić and J. Tambača, Self-consistent effective equations modeling blood flow in medium-to-large compliant arteries,, Multiscale Model. Simul., 5 (2005), 559.   Google Scholar

[6]

S. Čanić and D. Mirković, A hyperbolic system of conservation laws in modeling endovascular treatment of abdoninal aortic aneurysm,, in, 141 (2000), 227.   Google Scholar

[7]

C. M. Dafermos, A system of hyperbolic conservation laws with frictional damping,, Z. Angew. Math. Phys., 46 Special Issue (1995), 294.   Google Scholar

[8]

L. Formaggia, F. Nobile and A. Quarteroni, A one-dimensional model for blood flow: application to vascular prosthesis,, in, 19 (2002), 137.   Google Scholar

[9]

L. Formaggia, F. Nobile, A. Quarteroni and A. Veneziani, Multiscale modeling of the circulatory system: A preliminary analysis,, Comput. Visual. Sci., 2 (1999), 75.   Google Scholar

[10]

L. Hsiao, "Quasilinear Hyperbolic Systems and Dissipative Mechanisms,", World Scientific, (1998).  doi: 10.1142/9789812816917.  Google Scholar

[11]

T. Li and S. Čanić, Critical thresholds in a quasilinear hyperbolic model of blood flow,, Netw. Heterog. Media, 4 (2009), 527.  doi: 10.3934/nhm.2009.4.527.  Google Scholar

[12]

T. Nishida, Nonlinear hyperbolic equations and related topics in fluid dynamics,, Publ. Math. D'Orsay, (1978), 46.   Google Scholar

[13]

K. Nishihara, Convergence rates to nonlinear diffusion waves for solutions of system of hyperbolic conservation laws with damping,, J. Differential Equations, 131 (1996), 171.  doi: 10.1006/jdeq.1996.0159.  Google Scholar

[14]

K. Nishihara and T. Yang, Boundary effect on asymptotic behavior of solutions to the $p$-system with damping,, J. Differentail Equations, 156 (1999), 439.  doi: 10.1006/jdeq.1998.3598.  Google Scholar

[15]

M. Olufsen, C. Peskin, W. Kim, E. Pedersen, A. Nadim and J. Larsen, Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions,, Annals of Biomedical Engineering, 28 (2000), 1281.  doi: 10.1114/1.1326031.  Google Scholar

[16]

R. H. Pan and K. Zhao, 3D compressible Euler equations with damping in bounded domains,, J. Differential Equations, 246 (2009), 581.  doi: 10.1016/j.jde.2008.06.007.  Google Scholar

[17]

A. J. Pullan, N. P. Smith and P. J. Hunter, An anatomically based model of transient coronary blood flow in the heart,, SIAM J. Appl. Math., 62 (2002), 990.  doi: 10.1137/S0036139999355199.  Google Scholar

[18]

T. C. Sideris, B. Thomases and D. H. Wang, Long time behavior of solutions to the 3D compressible Euler equations with damping,, Comm. Partial Differential Equations, 28 (2003), 795.  doi: 10.1081/PDE-120020497.  Google Scholar

[19]

J. L. Vazquez, "The Porous Medium Equation: Mathematical Theory,", Oxford Science Publications, (2007).   Google Scholar

show all references

References:
[1]

M. Anliker, R. L. Rockwell and E. Ogden, Nonlinear analysis of flow pulses and shock waves in arteries, Part I: Derivation and properties of mathematical model,, Z. Angew. Math. Phys., 22 (1971), 217.  doi: 10.1007/BF01591407.  Google Scholar

[2]

A. C. L. Barnard, W. A. Hunt, W. P. Timlake and E. Varley, A theory of fluid flow in compliant tubes,, Biophysical J., 6 (1966), 717.  doi: 10.1016/S0006-3495(66)86690-0.  Google Scholar

[3]

S. Čanić, Blood flow through compliant vessels after endovascular repair: Wall deformations induced by the discontinuous wall properties,, Comput. Visual. Sci., 4 (2002), 147.  doi: 10.1126/science.4.83.147.  Google Scholar

[4]

S. Čanić and E. H. Kim, Mathematical analysis of the quasilinear effects in a hyperbolic model blood flow through compliant axi-symmetric vessels,, Math. Methods Appl. Sci., 26 (2003), 1161.  doi: 10.1002/mma.407.  Google Scholar

[5]

S. Čanić, D. Lamponi, A. Mikelić and J. Tambača, Self-consistent effective equations modeling blood flow in medium-to-large compliant arteries,, Multiscale Model. Simul., 5 (2005), 559.   Google Scholar

[6]

S. Čanić and D. Mirković, A hyperbolic system of conservation laws in modeling endovascular treatment of abdoninal aortic aneurysm,, in, 141 (2000), 227.   Google Scholar

[7]

C. M. Dafermos, A system of hyperbolic conservation laws with frictional damping,, Z. Angew. Math. Phys., 46 Special Issue (1995), 294.   Google Scholar

[8]

L. Formaggia, F. Nobile and A. Quarteroni, A one-dimensional model for blood flow: application to vascular prosthesis,, in, 19 (2002), 137.   Google Scholar

[9]

L. Formaggia, F. Nobile, A. Quarteroni and A. Veneziani, Multiscale modeling of the circulatory system: A preliminary analysis,, Comput. Visual. Sci., 2 (1999), 75.   Google Scholar

[10]

L. Hsiao, "Quasilinear Hyperbolic Systems and Dissipative Mechanisms,", World Scientific, (1998).  doi: 10.1142/9789812816917.  Google Scholar

[11]

T. Li and S. Čanić, Critical thresholds in a quasilinear hyperbolic model of blood flow,, Netw. Heterog. Media, 4 (2009), 527.  doi: 10.3934/nhm.2009.4.527.  Google Scholar

[12]

T. Nishida, Nonlinear hyperbolic equations and related topics in fluid dynamics,, Publ. Math. D'Orsay, (1978), 46.   Google Scholar

[13]

K. Nishihara, Convergence rates to nonlinear diffusion waves for solutions of system of hyperbolic conservation laws with damping,, J. Differential Equations, 131 (1996), 171.  doi: 10.1006/jdeq.1996.0159.  Google Scholar

[14]

K. Nishihara and T. Yang, Boundary effect on asymptotic behavior of solutions to the $p$-system with damping,, J. Differentail Equations, 156 (1999), 439.  doi: 10.1006/jdeq.1998.3598.  Google Scholar

[15]

M. Olufsen, C. Peskin, W. Kim, E. Pedersen, A. Nadim and J. Larsen, Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions,, Annals of Biomedical Engineering, 28 (2000), 1281.  doi: 10.1114/1.1326031.  Google Scholar

[16]

R. H. Pan and K. Zhao, 3D compressible Euler equations with damping in bounded domains,, J. Differential Equations, 246 (2009), 581.  doi: 10.1016/j.jde.2008.06.007.  Google Scholar

[17]

A. J. Pullan, N. P. Smith and P. J. Hunter, An anatomically based model of transient coronary blood flow in the heart,, SIAM J. Appl. Math., 62 (2002), 990.  doi: 10.1137/S0036139999355199.  Google Scholar

[18]

T. C. Sideris, B. Thomases and D. H. Wang, Long time behavior of solutions to the 3D compressible Euler equations with damping,, Comm. Partial Differential Equations, 28 (2003), 795.  doi: 10.1081/PDE-120020497.  Google Scholar

[19]

J. L. Vazquez, "The Porous Medium Equation: Mathematical Theory,", Oxford Science Publications, (2007).   Google Scholar

[1]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[2]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[3]

Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020360

[4]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[5]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[6]

Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053

[7]

Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312

[8]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[9]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[10]

Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020033

[11]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[12]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052

[13]

Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380

[14]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[15]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[16]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[17]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[18]

Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381

[19]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[20]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]