\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Existence and some limit analysis of stationary solutions for a multi-dimensional bipolar Euler-Poisson system

Abstract Related Papers Cited by
  • In this paper, we study a two- and three-dimensional bipolar Euler-Poisson system (hydrodynamic model). The system arises in mathematical modeling for semiconductors and plasmas. We are interested in the steady state isentropic case supplemented by the proper boundary conditions. We first show the existence and uniqueness of irrotational subsonic stationary solutions for the two- and three-dimensional hydrodynamic model. Next, we investigate the zero-electron-mass limit, the zero-relaxation-time limit and the Debye-length (quasi-neutral) limit for above stationary solutions, respectively. For each limit, we show the strong convergence of the sequence of solutions and give the associated convergence rates.
    Mathematics Subject Classification: Primary: 35B40, 70K75, 74G55, 76M45.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. Amster and M. P. Beccar Varela, Subsonic solutions to a one-dimensional nonisentropic hydrodynamic model for semiconductors, J. Math. Anal. Appl., 258 (2001), 52-62.doi: 10.1006/jmaa.2000.7359.

    [2]

    A. Ambrose, F. Méhats and P. Raviart, On singular perturbation problems for the nonlinear Poisson equation, Asymptot. Anal., 25 (2001), 39-91.

    [3]

    U. Ascher, P. A. Markowich and C. Schmeiser, A phase plane analysis of transonic solutions for the hydrodynamic semiconductor model, Math. Models Meth. Appl. Sci., 11 (1991), 347-376.doi: 10.1142/S0218202591000174.

    [4]

    H. Brézis, F. Golse and R. Sentis, Analyse asymptotique de l'équation de Poisson couplée à la relation de Boltzmann. Quasi-neutralité des plasmas, C. R. Acad. Sci. Paris, 321 (1995), 953-959.

    [5]

    S. Cordier and E. Grenier, Quasineutral limit of an Euler-Poisson system arising from plasma physics, Comm. Partial Differential Equations, 25 (2000), 1099-1113.doi: 10.1080/03605300008821542.

    [6]

    P. Degond and P. A. Markowich, On a one-dimensional steady-state hydrodynamic model for semiconductors, Appl. Math. Letters, 3 (1990), 25-29.doi: 10.1016/0893-9659(90)90130-4.

    [7]

    P. Degond and P. A. Markowich, A steady state potential flow model for semiconductors, Ann. Math. Pura Appl.(4), 165 (1993), 87-98.

    [8]

    I. M. Gamba, Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductors, Comm. Partial Differential Equations, 17 (1992), 553-577.

    [9]

    T. Goudon, A. Jüngel and Y.-J. Peng, Zero-mass-electrons limits in hydrodynamic models for plasmas, Appl. Math. Letters, 12 (1999), 75-79.doi: 10.1016/S0893-9659(99)00038-5.

    [10]

    D. Gilbarg and N. S. Trüdinger, "Elliptic Partial Differential Equations of Second Order," Springer-Verlag, New York, 1998.

    [11]

    L. Hsiao and K. Zhang, The relaxation of the hydrodynamic model for semiconductors to the drift diffusion equations, J. Differential Equations, 165 (2000), 315-354.doi: 10.1006/jdeq.2000.3780.

    [12]

    A. Jüngel and Y.-J. Peng, Zero-relaxation-time limits in hydrodynamic models for plasmas revisted, Z. Angew. Math. Phys., 51 (2000), 385-396.doi: 10.1007/s000330050004.

    [13]

    A. Jüngel, "Quasi-Hydrodynamic Semiconductor Equations," Progress in Nonlinear Differential Equations, Birkhäuser, 2001.

    [14]

    C. Lattanzio and P. Marcati, The relaxation to the drift-diffusion system for the 3-D isentropic Euler-Poisson model for semiconductors, Discrete Contin. Dyn. Syst., 5 (1999), 449-455.doi: 10.3934/dcds.1999.5.449.

    [15]

    Y.-P. Li and J.-Z. Zhang, Stationary solutions for a multi-dimensional nonisentropic hydrodynamic model for semiconductors, Math. Comput. Modeling, 49 (2009), 163-177.doi: 10.1016/j.mcm.2008.05.006.

    [16]

    Y.-P. Li, Stationary solutions for a one-dimensional nonisentropic hydrodynamic model for semiconductors, Acta Math. Sci., B28 (2008), 479-488.

    [17]

    Y.-P. Li, Asymptotic profile in a one-dimensional nonisentropic hydrodynamic model for semiconductors, J. Math. Anal. Appl., 325 (2007), 949-967.doi: 10.1016/j.jmaa.2006.02.018.

    [18]

    O. A. Ladyzhenskaya and N. U. Uraltsera, "Linear and Quasilinear Elliptic Equations," Academic Press, New York, 1968.

    [19]

    Y.-P. Li, Asymptotic profile in a multi-dimensional nonisentropic hydrodynamic model for semiconductors, Nonlinear Anal. Real World Appl., 8 (2007), 1235-1251.doi: 10.1016/j.nonrwa.2006.06.011.

    [20]

    P. A. Markowich, On steady state Euler-Poisson models for semiconductors, Z. Angew Math. Phys., 42 (1991), 387-407.doi: 10.1007/BF00945711.

    [21]

    P. Marcati and R. Natalini, Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation, Arch. Rational Mech. Anal., 129 (1995), 129-145.doi: 10.1007/BF00379918.

    [22]

    P. A. Markowich, C. A. Ringhofev and C. Schmeiser, "Semiconductor Equations," Springer-Verlag, Wien, New York, 1990.

    [23]

    Y.-J. Peng, Some analysis in steady-state Euler-Poisson equations for potential flow, Asymp. Anal., 36 (2003), 75-92.

    [24]

    Y.-J. Peng and Y.-G. Wang, Convergence of compressible Euler-Poisson equations to incompressible type Euler equations, Asymptotic Anal., 41 (2005), 141-160.

    [25]

    Y.-J. Peng and Y.-G. Wang, Boundary layers and quasi-neutral limit in steady state Euler-Poisson equations for potential flows, Nonlinearity, 17 (2004), 835-849.doi: 10.1088/0951-7715/17/3/006.

    [26]

    Y.-J. Peng and I. Violet, Asymptotic expansions in a steady state Euler-Poisson equations to incompressible Euler equations, Math. Models Meth. Appl. Sci., 15 (2005), 717-736.doi: 10.1142/S0218202505000546.

    [27]

    Y.-J. Peng and Y.-F. Yang, Junction layer analysis in one-dimensional steady-state Euler-Poisson equations, J. Math. Anal. Appl., 344 (2008), 440-448.doi: 10.1016/j.jmaa.2008.02.062.

    [28]

    M. D. Rosini, A phase analysis of transonic solutions for the hydrodynamic semiconductor model, Quart. Appl. Math., 2003.

    [29]

    M. Slemrod and N. Sternberg, Quasi-neutral limit for the Euler-Poisson system, J. Nonlinear Sci., 11 (2001), 193-209.doi: 10.1007/s00332-001-0004-9.

    [30]

    I. Violet, High-order expansions in the quasi-neutral limit of the Euler-Poisson system for a potential flow, Proc. Roy. Soc. Edinburgh, 137 (2007), 1101-1118.doi: 10.1017/S0308210505001216.

    [31]

    S. Wang, Quasineutral limit of Euler-Poinsson system with and without viscosity, Comm. Partial Differential Equations, 29 (2004), 419-456.doi: 10.1081/PDE-120030403.

    [32]

    L.-M. Yeh, On a steady state Euler-Poisson model for semiconductors, Comm. Partial Differential Equations, 21 (1996), 1007-1034.doi: 10.1080/03605309608821216.

    [33]

    F. Zhou and Y.-P. Li, Existence and some limits of stationary solutions to a one-dimensional bipolar Euler-Poisson system, J. Math. Anal. Appl., 351 (2009), 480-490.doi: 10.1016/j.jmaa.2008.10.032.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(76) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return