-
Previous Article
Derivation and stability study of a rigid lid bilayer model
- DCDS-B Home
- This Issue
-
Next Article
On a quasilinear hyperbolic system in blood flow modeling
Existence and some limit analysis of stationary solutions for a multi-dimensional bipolar Euler-Poisson system
1. | Department of Mathematics, Shanghai Normal University, Shanghai 200234 |
References:
[1] |
P. Amster and M. P. Beccar Varela, Subsonic solutions to a one-dimensional nonisentropic hydrodynamic model for semiconductors,, J. Math. Anal. Appl., 258 (2001), 52.
doi: 10.1006/jmaa.2000.7359. |
[2] |
A. Ambrose, F. Méhats and P. Raviart, On singular perturbation problems for the nonlinear Poisson equation,, Asymptot. Anal., 25 (2001), 39.
|
[3] |
U. Ascher, P. A. Markowich and C. Schmeiser, A phase plane analysis of transonic solutions for the hydrodynamic semiconductor model,, Math. Models Meth. Appl. Sci., 11 (1991), 347.
doi: 10.1142/S0218202591000174. |
[4] |
H. Brézis, F. Golse and R. Sentis, Analyse asymptotique de l'équation de Poisson couplée à la relation de Boltzmann. Quasi-neutralité des plasmas,, C. R. Acad. Sci. Paris, 321 (1995), 953.
|
[5] |
S. Cordier and E. Grenier, Quasineutral limit of an Euler-Poisson system arising from plasma physics,, Comm. Partial Differential Equations, 25 (2000), 1099.
doi: 10.1080/03605300008821542. |
[6] |
P. Degond and P. A. Markowich, On a one-dimensional steady-state hydrodynamic model for semiconductors,, Appl. Math. Letters, 3 (1990), 25.
doi: 10.1016/0893-9659(90)90130-4. |
[7] |
P. Degond and P. A. Markowich, A steady state potential flow model for semiconductors,, Ann. Math. Pura Appl.(4), 165 (1993), 87.
|
[8] |
I. M. Gamba, Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductors,, Comm. Partial Differential Equations, 17 (1992), 553.
|
[9] |
T. Goudon, A. Jüngel and Y.-J. Peng, Zero-mass-electrons limits in hydrodynamic models for plasmas,, Appl. Math. Letters, 12 (1999), 75.
doi: 10.1016/S0893-9659(99)00038-5. |
[10] |
D. Gilbarg and N. S. Trüdinger, "Elliptic Partial Differential Equations of Second Order,", Springer-Verlag, (1998).
|
[11] |
L. Hsiao and K. Zhang, The relaxation of the hydrodynamic model for semiconductors to the drift diffusion equations,, J. Differential Equations, 165 (2000), 315.
doi: 10.1006/jdeq.2000.3780. |
[12] |
A. Jüngel and Y.-J. Peng, Zero-relaxation-time limits in hydrodynamic models for plasmas revisted,, Z. Angew. Math. Phys., 51 (2000), 385.
doi: 10.1007/s000330050004. |
[13] |
A. Jüngel, "Quasi-Hydrodynamic Semiconductor Equations,", Progress in Nonlinear Differential Equations, (2001).
|
[14] |
C. Lattanzio and P. Marcati, The relaxation to the drift-diffusion system for the 3-D isentropic Euler-Poisson model for semiconductors,, Discrete Contin. Dyn. Syst., 5 (1999), 449.
doi: 10.3934/dcds.1999.5.449. |
[15] |
Y.-P. Li and J.-Z. Zhang, Stationary solutions for a multi-dimensional nonisentropic hydrodynamic model for semiconductors,, Math. Comput. Modeling, 49 (2009), 163.
doi: 10.1016/j.mcm.2008.05.006. |
[16] |
Y.-P. Li, Stationary solutions for a one-dimensional nonisentropic hydrodynamic model for semiconductors,, Acta Math. Sci., B28 (2008), 479.
|
[17] |
Y.-P. Li, Asymptotic profile in a one-dimensional nonisentropic hydrodynamic model for semiconductors,, J. Math. Anal. Appl., 325 (2007), 949.
doi: 10.1016/j.jmaa.2006.02.018. |
[18] |
O. A. Ladyzhenskaya and N. U. Uraltsera, "Linear and Quasilinear Elliptic Equations,", Academic Press, (1968).
|
[19] |
Y.-P. Li, Asymptotic profile in a multi-dimensional nonisentropic hydrodynamic model for semiconductors,, Nonlinear Anal. Real World Appl., 8 (2007), 1235.
doi: 10.1016/j.nonrwa.2006.06.011. |
[20] |
P. A. Markowich, On steady state Euler-Poisson models for semiconductors,, Z. Angew Math. Phys., 42 (1991), 387.
doi: 10.1007/BF00945711. |
[21] |
P. Marcati and R. Natalini, Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation,, Arch. Rational Mech. Anal., 129 (1995), 129.
doi: 10.1007/BF00379918. |
[22] |
P. A. Markowich, C. A. Ringhofev and C. Schmeiser, "Semiconductor Equations,", Springer-Verlag, (1990).
|
[23] |
Y.-J. Peng, Some analysis in steady-state Euler-Poisson equations for potential flow,, Asymp. Anal., 36 (2003), 75.
|
[24] |
Y.-J. Peng and Y.-G. Wang, Convergence of compressible Euler-Poisson equations to incompressible type Euler equations,, Asymptotic Anal., 41 (2005), 141.
|
[25] |
Y.-J. Peng and Y.-G. Wang, Boundary layers and quasi-neutral limit in steady state Euler-Poisson equations for potential flows,, Nonlinearity, 17 (2004), 835.
doi: 10.1088/0951-7715/17/3/006. |
[26] |
Y.-J. Peng and I. Violet, Asymptotic expansions in a steady state Euler-Poisson equations to incompressible Euler equations,, Math. Models Meth. Appl. Sci., 15 (2005), 717.
doi: 10.1142/S0218202505000546. |
[27] |
Y.-J. Peng and Y.-F. Yang, Junction layer analysis in one-dimensional steady-state Euler-Poisson equations,, J. Math. Anal. Appl., 344 (2008), 440.
doi: 10.1016/j.jmaa.2008.02.062. |
[28] |
M. D. Rosini, A phase analysis of transonic solutions for the hydrodynamic semiconductor model,, Quart. Appl. Math., (2003).
|
[29] |
M. Slemrod and N. Sternberg, Quasi-neutral limit for the Euler-Poisson system,, J. Nonlinear Sci., 11 (2001), 193.
doi: 10.1007/s00332-001-0004-9. |
[30] |
I. Violet, High-order expansions in the quasi-neutral limit of the Euler-Poisson system for a potential flow,, Proc. Roy. Soc. Edinburgh, 137 (2007), 1101.
doi: 10.1017/S0308210505001216. |
[31] |
S. Wang, Quasineutral limit of Euler-Poinsson system with and without viscosity,, Comm. Partial Differential Equations, 29 (2004), 419.
doi: 10.1081/PDE-120030403. |
[32] |
L.-M. Yeh, On a steady state Euler-Poisson model for semiconductors,, Comm. Partial Differential Equations, 21 (1996), 1007.
doi: 10.1080/03605309608821216. |
[33] |
F. Zhou and Y.-P. Li, Existence and some limits of stationary solutions to a one-dimensional bipolar Euler-Poisson system,, J. Math. Anal. Appl., 351 (2009), 480.
doi: 10.1016/j.jmaa.2008.10.032. |
show all references
References:
[1] |
P. Amster and M. P. Beccar Varela, Subsonic solutions to a one-dimensional nonisentropic hydrodynamic model for semiconductors,, J. Math. Anal. Appl., 258 (2001), 52.
doi: 10.1006/jmaa.2000.7359. |
[2] |
A. Ambrose, F. Méhats and P. Raviart, On singular perturbation problems for the nonlinear Poisson equation,, Asymptot. Anal., 25 (2001), 39.
|
[3] |
U. Ascher, P. A. Markowich and C. Schmeiser, A phase plane analysis of transonic solutions for the hydrodynamic semiconductor model,, Math. Models Meth. Appl. Sci., 11 (1991), 347.
doi: 10.1142/S0218202591000174. |
[4] |
H. Brézis, F. Golse and R. Sentis, Analyse asymptotique de l'équation de Poisson couplée à la relation de Boltzmann. Quasi-neutralité des plasmas,, C. R. Acad. Sci. Paris, 321 (1995), 953.
|
[5] |
S. Cordier and E. Grenier, Quasineutral limit of an Euler-Poisson system arising from plasma physics,, Comm. Partial Differential Equations, 25 (2000), 1099.
doi: 10.1080/03605300008821542. |
[6] |
P. Degond and P. A. Markowich, On a one-dimensional steady-state hydrodynamic model for semiconductors,, Appl. Math. Letters, 3 (1990), 25.
doi: 10.1016/0893-9659(90)90130-4. |
[7] |
P. Degond and P. A. Markowich, A steady state potential flow model for semiconductors,, Ann. Math. Pura Appl.(4), 165 (1993), 87.
|
[8] |
I. M. Gamba, Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductors,, Comm. Partial Differential Equations, 17 (1992), 553.
|
[9] |
T. Goudon, A. Jüngel and Y.-J. Peng, Zero-mass-electrons limits in hydrodynamic models for plasmas,, Appl. Math. Letters, 12 (1999), 75.
doi: 10.1016/S0893-9659(99)00038-5. |
[10] |
D. Gilbarg and N. S. Trüdinger, "Elliptic Partial Differential Equations of Second Order,", Springer-Verlag, (1998).
|
[11] |
L. Hsiao and K. Zhang, The relaxation of the hydrodynamic model for semiconductors to the drift diffusion equations,, J. Differential Equations, 165 (2000), 315.
doi: 10.1006/jdeq.2000.3780. |
[12] |
A. Jüngel and Y.-J. Peng, Zero-relaxation-time limits in hydrodynamic models for plasmas revisted,, Z. Angew. Math. Phys., 51 (2000), 385.
doi: 10.1007/s000330050004. |
[13] |
A. Jüngel, "Quasi-Hydrodynamic Semiconductor Equations,", Progress in Nonlinear Differential Equations, (2001).
|
[14] |
C. Lattanzio and P. Marcati, The relaxation to the drift-diffusion system for the 3-D isentropic Euler-Poisson model for semiconductors,, Discrete Contin. Dyn. Syst., 5 (1999), 449.
doi: 10.3934/dcds.1999.5.449. |
[15] |
Y.-P. Li and J.-Z. Zhang, Stationary solutions for a multi-dimensional nonisentropic hydrodynamic model for semiconductors,, Math. Comput. Modeling, 49 (2009), 163.
doi: 10.1016/j.mcm.2008.05.006. |
[16] |
Y.-P. Li, Stationary solutions for a one-dimensional nonisentropic hydrodynamic model for semiconductors,, Acta Math. Sci., B28 (2008), 479.
|
[17] |
Y.-P. Li, Asymptotic profile in a one-dimensional nonisentropic hydrodynamic model for semiconductors,, J. Math. Anal. Appl., 325 (2007), 949.
doi: 10.1016/j.jmaa.2006.02.018. |
[18] |
O. A. Ladyzhenskaya and N. U. Uraltsera, "Linear and Quasilinear Elliptic Equations,", Academic Press, (1968).
|
[19] |
Y.-P. Li, Asymptotic profile in a multi-dimensional nonisentropic hydrodynamic model for semiconductors,, Nonlinear Anal. Real World Appl., 8 (2007), 1235.
doi: 10.1016/j.nonrwa.2006.06.011. |
[20] |
P. A. Markowich, On steady state Euler-Poisson models for semiconductors,, Z. Angew Math. Phys., 42 (1991), 387.
doi: 10.1007/BF00945711. |
[21] |
P. Marcati and R. Natalini, Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation,, Arch. Rational Mech. Anal., 129 (1995), 129.
doi: 10.1007/BF00379918. |
[22] |
P. A. Markowich, C. A. Ringhofev and C. Schmeiser, "Semiconductor Equations,", Springer-Verlag, (1990).
|
[23] |
Y.-J. Peng, Some analysis in steady-state Euler-Poisson equations for potential flow,, Asymp. Anal., 36 (2003), 75.
|
[24] |
Y.-J. Peng and Y.-G. Wang, Convergence of compressible Euler-Poisson equations to incompressible type Euler equations,, Asymptotic Anal., 41 (2005), 141.
|
[25] |
Y.-J. Peng and Y.-G. Wang, Boundary layers and quasi-neutral limit in steady state Euler-Poisson equations for potential flows,, Nonlinearity, 17 (2004), 835.
doi: 10.1088/0951-7715/17/3/006. |
[26] |
Y.-J. Peng and I. Violet, Asymptotic expansions in a steady state Euler-Poisson equations to incompressible Euler equations,, Math. Models Meth. Appl. Sci., 15 (2005), 717.
doi: 10.1142/S0218202505000546. |
[27] |
Y.-J. Peng and Y.-F. Yang, Junction layer analysis in one-dimensional steady-state Euler-Poisson equations,, J. Math. Anal. Appl., 344 (2008), 440.
doi: 10.1016/j.jmaa.2008.02.062. |
[28] |
M. D. Rosini, A phase analysis of transonic solutions for the hydrodynamic semiconductor model,, Quart. Appl. Math., (2003).
|
[29] |
M. Slemrod and N. Sternberg, Quasi-neutral limit for the Euler-Poisson system,, J. Nonlinear Sci., 11 (2001), 193.
doi: 10.1007/s00332-001-0004-9. |
[30] |
I. Violet, High-order expansions in the quasi-neutral limit of the Euler-Poisson system for a potential flow,, Proc. Roy. Soc. Edinburgh, 137 (2007), 1101.
doi: 10.1017/S0308210505001216. |
[31] |
S. Wang, Quasineutral limit of Euler-Poinsson system with and without viscosity,, Comm. Partial Differential Equations, 29 (2004), 419.
doi: 10.1081/PDE-120030403. |
[32] |
L.-M. Yeh, On a steady state Euler-Poisson model for semiconductors,, Comm. Partial Differential Equations, 21 (1996), 1007.
doi: 10.1080/03605309608821216. |
[33] |
F. Zhou and Y.-P. Li, Existence and some limits of stationary solutions to a one-dimensional bipolar Euler-Poisson system,, J. Math. Anal. Appl., 351 (2009), 480.
doi: 10.1016/j.jmaa.2008.10.032. |
[1] |
Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003 |
[2] |
Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216 |
[3] |
Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145 |
[4] |
Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003 |
[5] |
Theresa Lange, Wilhelm Stannat. Mean field limit of ensemble square root filters - discrete and continuous time. Foundations of Data Science, 2021 doi: 10.3934/fods.2021003 |
[6] |
Jaume Llibre, Claudia Valls. Rational limit cycles of abel equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021007 |
[7] |
Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124 |
[8] |
Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405 |
[9] |
Dmitry Dolgopyat. The work of Sébastien Gouëzel on limit theorems and on weighted Banach spaces. Journal of Modern Dynamics, 2020, 16: 351-371. doi: 10.3934/jmd.2020014 |
[10] |
Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257 |
[11] |
Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001 |
[12] |
Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304 |
[13] |
Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020368 |
[14] |
Björn Augner, Dieter Bothe. The fast-sorption and fast-surface-reaction limit of a heterogeneous catalysis model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 533-574. doi: 10.3934/dcdss.2020406 |
[15] |
Azmy S. Ackleh, Nicolas Saintier. Diffusive limit to a selection-mutation equation with small mutation formulated on the space of measures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1469-1497. doi: 10.3934/dcdsb.2020169 |
[16] |
Tinghua Hu, Yang Yang, Zhengchun Zhou. Golay complementary sets with large zero odd-periodic correlation zones. Advances in Mathematics of Communications, 2021, 15 (1) : 23-33. doi: 10.3934/amc.2020040 |
[17] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020107 |
[18] |
Zhongbao Zhou, Yanfei Bai, Helu Xiao, Xu Chen. A non-zero-sum reinsurance-investment game with delay and asymmetric information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 909-936. doi: 10.3934/jimo.2020004 |
[19] |
Yutong Chen, Jiabao Su. Nontrivial solutions for the fractional Laplacian problems without asymptotic limits near both infinity and zero. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021007 |
[20] |
Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020336 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]