July  2011, 16(1): 361-383. doi: 10.3934/dcdsb.2011.16.361

Derivation and stability study of a rigid lid bilayer model

1. 

Laboratoire d'Analyse Numérique et Informatique, Université Gaston Berger, UFR SAT BP 234 Saint-Louis, Sénégal, LAMA, UMR 5127 CNRS, Université de Savoie, 73376 Le Bourget du lac, France

2. 

Laboratoire d'Analyse Numérique et d'Informatique (LANI), Université Gaston Berger, BP 234, Saint-Louis

Received  December 2009 Revised  September 2010 Published  April 2011

In this paper we present the derivation of a bilayer shallow water model with rigid lid hypothesis. We start from the incompressible Navier-Stokes equations, we introduce a small parameter $\varepsilon$ which is the ratio between the characteristic height and the characteristic length of the fluids domain. We use a formal asymptotic expansion then we resort to averaging to obtain the model. We also prove the stability of the model, in the following sense, up to a subsequence, every sequence of weak solutions converges to a solution of the model.
Citation: Timack Ngom, Mamadou Sy. Derivation and stability study of a rigid lid bilayer model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 361-383. doi: 10.3934/dcdsb.2011.16.361
References:
[1]

F. Bouchut and M. Westdickenberg, Gravity driven shallow water models for arbitrary topography,, Commun. Math. Sci., 2 (2004), 359.   Google Scholar

[2]

E. Audusse, A multilayer Saint-Venant model: derivation and numerical validation,, Discrete Contin. Dyn. Syst. Ser. B, 5 (2005), 189.  doi: 10.3934/dcdsb.2005.5.189.  Google Scholar

[3]

E. Bruce Pitman and Long Le, A two-fluid model for avalanche and debris flows,, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 363 (2005), 1573.   Google Scholar

[4]

B. Di Martino, P. Orenga and M. Peybernes, On a bi-layer shallow water model with rigid-lid hypothesis,, Math. Models Methods Appl. Sci., 15 (2005), 843.  doi: 10.1142/S0218202505000583.  Google Scholar

[5]

G. Narbona-Reina, J. D. D. Zabsonré, E. D. Fernández-Nieto and D. Bresch, Derivation of a bilayer model for shallow water equations with viscosity. Numerical validation,, CMES Comput. Model. Eng. Sci., 43 (2009), 27.   Google Scholar

[6]

B. Di Martino, C. Giacomoni and P. Orenga, Analysis of some shallow water problems with rigid-lid hypothesis,, Math. Models Methods Appl. Sci., 11 (2001), 979.  doi: 10.1142/S0218202501001203.  Google Scholar

[7]

María Luz Muñoz-Ruiz, Manuel Jesú Castro-Díaz and Carlos Parés, On an one-dimensional bi-layer shallow-water problem,, Nonlinear Anal., 53 (2003), 567.  doi: 10.1016/S0362-546X(02)00137-2.  Google Scholar

[8]

Philippe Guyenne, David Lannes and Jean-Claude Saut, Well-posedness of the Cauchy problem for models of large amplitude internal waves,, Nonlinearity, 23 (2010), 237.  doi: 10.1088/0951-7715/23/2/003.  Google Scholar

[9]

D. Bresch and M. Renardy, Well-posedness of two-layer shallow water flow between two horizontal rigid plates,, To appear in nonlinearity, (2011).   Google Scholar

[10]

D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model,, Comm. Math. Phys., 238 (2003), 211.   Google Scholar

[11]

J. Simon, "Équation de Navier-Stokes,'', Cours de DEA 2002-2003 Universit茅 Blaise Pascal Clermont-Ferrand., (): 2002.   Google Scholar

[12]

J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires,'', Dunod, (1969).   Google Scholar

[13]

A. Mellet and A. Vasseur, On the barotropic compressible Navier-Stokes equations,, Comm. Partial Differential Equations, 32 (2007), 431.  doi: 10.1080/03605300600857079.  Google Scholar

[14]

D. Bresch, B. Desjardins and D. Gérard-Varet, On compressible Navier-Stokes equations with density dependent viscosities in bounded domains,, J. Math. Pures Appl. (9), 87 (2007), 227.  doi: 10.1016/j.matpur.2006.10.010.  Google Scholar

[15]

F. Boyer and P. Fabrie, "Eléments D'analyse pour L'éetude de Quelques Modèles D'écoulements de Fluides Visqueux Incompressibles,'', Mathématiques & Applications (Berlin) [Mathematics & Applications]., ().   Google Scholar

[16]

F. Boyer, "Analyse Numérique des edp Elliptiques,'', Cours Master 2 2009 Université Paul Cézanne., (2009).   Google Scholar

show all references

References:
[1]

F. Bouchut and M. Westdickenberg, Gravity driven shallow water models for arbitrary topography,, Commun. Math. Sci., 2 (2004), 359.   Google Scholar

[2]

E. Audusse, A multilayer Saint-Venant model: derivation and numerical validation,, Discrete Contin. Dyn. Syst. Ser. B, 5 (2005), 189.  doi: 10.3934/dcdsb.2005.5.189.  Google Scholar

[3]

E. Bruce Pitman and Long Le, A two-fluid model for avalanche and debris flows,, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 363 (2005), 1573.   Google Scholar

[4]

B. Di Martino, P. Orenga and M. Peybernes, On a bi-layer shallow water model with rigid-lid hypothesis,, Math. Models Methods Appl. Sci., 15 (2005), 843.  doi: 10.1142/S0218202505000583.  Google Scholar

[5]

G. Narbona-Reina, J. D. D. Zabsonré, E. D. Fernández-Nieto and D. Bresch, Derivation of a bilayer model for shallow water equations with viscosity. Numerical validation,, CMES Comput. Model. Eng. Sci., 43 (2009), 27.   Google Scholar

[6]

B. Di Martino, C. Giacomoni and P. Orenga, Analysis of some shallow water problems with rigid-lid hypothesis,, Math. Models Methods Appl. Sci., 11 (2001), 979.  doi: 10.1142/S0218202501001203.  Google Scholar

[7]

María Luz Muñoz-Ruiz, Manuel Jesú Castro-Díaz and Carlos Parés, On an one-dimensional bi-layer shallow-water problem,, Nonlinear Anal., 53 (2003), 567.  doi: 10.1016/S0362-546X(02)00137-2.  Google Scholar

[8]

Philippe Guyenne, David Lannes and Jean-Claude Saut, Well-posedness of the Cauchy problem for models of large amplitude internal waves,, Nonlinearity, 23 (2010), 237.  doi: 10.1088/0951-7715/23/2/003.  Google Scholar

[9]

D. Bresch and M. Renardy, Well-posedness of two-layer shallow water flow between two horizontal rigid plates,, To appear in nonlinearity, (2011).   Google Scholar

[10]

D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model,, Comm. Math. Phys., 238 (2003), 211.   Google Scholar

[11]

J. Simon, "Équation de Navier-Stokes,'', Cours de DEA 2002-2003 Universit茅 Blaise Pascal Clermont-Ferrand., (): 2002.   Google Scholar

[12]

J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires,'', Dunod, (1969).   Google Scholar

[13]

A. Mellet and A. Vasseur, On the barotropic compressible Navier-Stokes equations,, Comm. Partial Differential Equations, 32 (2007), 431.  doi: 10.1080/03605300600857079.  Google Scholar

[14]

D. Bresch, B. Desjardins and D. Gérard-Varet, On compressible Navier-Stokes equations with density dependent viscosities in bounded domains,, J. Math. Pures Appl. (9), 87 (2007), 227.  doi: 10.1016/j.matpur.2006.10.010.  Google Scholar

[15]

F. Boyer and P. Fabrie, "Eléments D'analyse pour L'éetude de Quelques Modèles D'écoulements de Fluides Visqueux Incompressibles,'', Mathématiques & Applications (Berlin) [Mathematics & Applications]., ().   Google Scholar

[16]

F. Boyer, "Analyse Numérique des edp Elliptiques,'', Cours Master 2 2009 Université Paul Cézanne., (2009).   Google Scholar

[1]

Bilal Al Taki, Khawla Msheik, Jacques Sainte-Marie. On the rigid-lid approximation of shallow water Bingham. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 875-905. doi: 10.3934/dcdsb.2020146

[2]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

[3]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[4]

Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315

[5]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[6]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[7]

Daniel Kressner, Jonas Latz, Stefano Massei, Elisabeth Ullmann. Certified and fast computations with shallow covariance kernels. Foundations of Data Science, 2020, 2 (4) : 487-512. doi: 10.3934/fods.2020022

[8]

Robert Stephen Cantrell, King-Yeung Lam. Competitive exclusion in phytoplankton communities in a eutrophic water column. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020361

[9]

Shin-Ichiro Ei, Masayasu Mimura, Tomoyuki Miyaji. Reflection of a self-propelling rigid disk from a boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 803-817. doi: 10.3934/dcdss.2020229

[10]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[11]

Linfeng Mei, Feng-Bin Wang. Dynamics of phytoplankton species competition for light and nutrient with recycling in a water column. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020359

[12]

Marta Biancardi, Lucia Maddalena, Giovanni Villani. Water taxes and fines imposed on legal and illegal firms exploiting groudwater. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021008

[13]

Kateřina Škardová, Tomáš Oberhuber, Jaroslav Tintěra, Radomír Chabiniok. Signed-distance function based non-rigid registration of image series with varying image intensity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1145-1160. doi: 10.3934/dcdss.2020386

[14]

Skyler Simmons. Stability of broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

[15]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[16]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[17]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[18]

Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020365

[19]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[20]

Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (54)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]