-
Previous Article
Local and global exponential synchronization of complex delayed dynamical networks with general topology
- DCDS-B Home
- This Issue
-
Next Article
Derivation and stability study of a rigid lid bilayer model
Positive periodic solution for Brillouin electron beam focusing system
1. | Dept. of Math., Zhengzhou University, Zhengzhou 450001, China, China |
2. | Dept. of Math., Dresden University of Technology, Dresden 01062, Germany |
References:
[1] |
V. Bevc, J. L. Palmer and C. Süsskind, On the design of the transition region of axisymmetric, magnetically focused beam valves,, J. British Inst. Radio Engineer, 18 (1958), 696. Google Scholar |
[2] |
T. R. Ding, "Applications of Qualitative Methods of Ordinary Differential Equations,", Higher Education Press, (2004). Google Scholar |
[3] |
T. R. Ding, A boundary value problem for the periodic Brillouin focusing system,, Acta Sci. Natru. Univ. Pekinensis, 11 (1965), 31. Google Scholar |
[4] |
Weigao Ge, "Boundary Value Problems for Nonlinear Ordinary Differential Equations,", Science Press, (2007). Google Scholar |
[5] |
J. Mawhin, Topological degree and boundary value problems for nonlinear differental equations,, Topological Methods for Ordinary Differential Equations, 1537 (1993), 74.
doi: 10.1007/BFb0085076. |
[6] |
P. J. Torres, Existence and uniquenness of elliptic periodic solutions of the Brillouin electron beam focusing system,, Math. Meth. Appl. Sci., 23 (2000), 1139.
doi: 10.1002/1099-1476(20000910)23:13<1139::AID-MMA155>3.0.CO;2-J. |
[7] |
Y. Ye and X. Wang, Nonlinear differential equations in electron beam focusing theory,, Acta Math. Appl. Sinica, 1 (1978), 13.
|
[8] |
M. R. Zhang, Periodic solutions of Liénard equations with singular forces of repulsive type,, J. Math. Anal. Appl., 203 (1996), 254.
doi: 10.1006/jmaa.1996.0378. |
[9] |
M. R. Zhang, Nonuniform nonresonance at the first eigenvalue of the $p$-Laplacian,, Nonlinear Analysis TMA, 29 (1997), 41.
doi: 10.1016/S0362-546X(96)00037-5. |
show all references
References:
[1] |
V. Bevc, J. L. Palmer and C. Süsskind, On the design of the transition region of axisymmetric, magnetically focused beam valves,, J. British Inst. Radio Engineer, 18 (1958), 696. Google Scholar |
[2] |
T. R. Ding, "Applications of Qualitative Methods of Ordinary Differential Equations,", Higher Education Press, (2004). Google Scholar |
[3] |
T. R. Ding, A boundary value problem for the periodic Brillouin focusing system,, Acta Sci. Natru. Univ. Pekinensis, 11 (1965), 31. Google Scholar |
[4] |
Weigao Ge, "Boundary Value Problems for Nonlinear Ordinary Differential Equations,", Science Press, (2007). Google Scholar |
[5] |
J. Mawhin, Topological degree and boundary value problems for nonlinear differental equations,, Topological Methods for Ordinary Differential Equations, 1537 (1993), 74.
doi: 10.1007/BFb0085076. |
[6] |
P. J. Torres, Existence and uniquenness of elliptic periodic solutions of the Brillouin electron beam focusing system,, Math. Meth. Appl. Sci., 23 (2000), 1139.
doi: 10.1002/1099-1476(20000910)23:13<1139::AID-MMA155>3.0.CO;2-J. |
[7] |
Y. Ye and X. Wang, Nonlinear differential equations in electron beam focusing theory,, Acta Math. Appl. Sinica, 1 (1978), 13.
|
[8] |
M. R. Zhang, Periodic solutions of Liénard equations with singular forces of repulsive type,, J. Math. Anal. Appl., 203 (1996), 254.
doi: 10.1006/jmaa.1996.0378. |
[9] |
M. R. Zhang, Nonuniform nonresonance at the first eigenvalue of the $p$-Laplacian,, Nonlinear Analysis TMA, 29 (1997), 41.
doi: 10.1016/S0362-546X(96)00037-5. |
[1] |
Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262 |
[2] |
Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298 |
[3] |
Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226 |
[4] |
Jintai Ding, Zheng Zhang, Joshua Deaton. The singularity attack to the multivariate signature scheme HIMQ-3. Advances in Mathematics of Communications, 2021, 15 (1) : 65-72. doi: 10.3934/amc.2020043 |
[5] |
Xin Zhong. Singularity formation to the nonhomogeneous magneto-micropolar fluid equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021021 |
[6] |
Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258 |
[7] |
Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267 |
[8] |
Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020353 |
[9] |
Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303 |
[10] |
Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002 |
[11] |
Bilel Elbetch, Tounsia Benzekri, Daniel Massart, Tewfik Sari. The multi-patch logistic equation. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021025 |
[12] |
Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301 |
[13] |
Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291 |
[14] |
Michael Winkler, Christian Stinner. Refined regularity and stabilization properties in a degenerate haptotaxis system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4039-4058. doi: 10.3934/dcds.2020030 |
[15] |
Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036 |
[16] |
Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020378 |
[17] |
Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003 |
[18] |
Chao Xing, Zhigang Pan, Quan Wang. Stabilities and dynamic transitions of the Fitzhugh-Nagumo system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 775-794. doi: 10.3934/dcdsb.2020134 |
[19] |
Marcos C. Mota, Regilene D. S. Oliveira. Dynamic aspects of Sprott BC chaotic system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1653-1673. doi: 10.3934/dcdsb.2020177 |
[20] |
Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]