-
Previous Article
Unboundedness of solutions for perturbed asymmetric oscillators
- DCDS-B Home
- This Issue
-
Next Article
Positive periodic solution for Brillouin electron beam focusing system
Local and global exponential synchronization of complex delayed dynamical networks with general topology
1. | National Key Laboratory of Science and Technology on Holistic Control, School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China |
2. | College of Mathematics Science, Chongqing Normal University, Chongqing 400047, China |
3. | Department of Mathematics and Science, Texas A&M University at Qatar, PO Box 23874, Doha, Qatar |
4. | Department of Mathematics, Southern Illinois University, Carbondale, IL 62901, United States |
References:
[1] |
S. H. Strogatz, Exploring complex networks,, Nature, 410 (2001), 268.
doi: 10.1038/35065725. |
[2] |
R. Albert and A. L. BarabIasi, Statistical mechanics of complex networks,, Rev. Mod. Phys., 74 (2002), 47.
doi: 10.1103/RevModPhys.74.47. |
[3] |
J. Wu and L. Jiao, Synchronization in complex delayed dynamical networks with nonsymmetric coupling,, Physica A, 386 (2007), 513.
doi: 10.1016/j.physa.2007.07.052. |
[4] |
T. Liu, G. M. Dimirovskib and J. Zhao, Exponential synchronization of complex delayed dynamical networks with general topology,, Physica A, 387 (2008), 643.
doi: 10.1016/j.physa.2007.09.019. |
[5] |
P. Li and Z. Yi, Synchronization analysis of delayed complex networks with time-varying couplings,, Physica A, 387 (2008), 3729.
doi: 10.1016/j.physa.2008.02.008. |
[6] |
C. Li and G. Chen, Synchronization in general complex dynamical networks with coupling delays,, Physica A, 343 (2004), 263.
doi: 10.1016/j.physa.2004.05.058. |
[7] |
J. Lu and D. W. C. Ho, Local and global synchronization in general complex dynamical networks with delay coupling,, Chaos, 37 (2008), 1497.
doi: 10.1016/j.chaos.2006.10.030. |
[8] |
C. P. Li, W. G. Sun and J. Kurths, Synchronization of complex dynamical networks with time delays,, Physica A, 361 (2006), 24.
doi: 10.1016/j.physa.2005.07.007. |
[9] |
X. Q. Wu, Synchronization-based topology identification of weighted general complex dynamical networks with time-varying coupling delay,, Physica A, 387 (2008), 997.
doi: 10.1016/j.physa.2007.10.030. |
[10] |
W. Yu, J. Cao and J. Lü, Global synchronization of linearly hybrid coupled networks with time-varying delay,, SIAM Journal on Applied Dynamical Systems, 7 (2008), 108.
doi: 10.1137/070679090. |
[11] |
J. Lu and J. Cao, Synchronization-based approach for parameters identification in delayed chaotic neural networks,, Physica A, 382 (2007), 672.
doi: 10.1016/j.physa.2007.04.021. |
[12] |
J. Lu and J. D. Cao, Adaptive synchronization of uncertain dynamical networks with delayed coupling,, Nonlinear Dynamics, 53 (2008), 107.
doi: 10.1007/s11071-007-9299-x. |
[13] |
H. Huang, G. Feng and J. Cao, Exponential synchronization of chaotic Lur'e systems with delayed feedback control,, Nonlinear Dynamics, 57 (2009), 441.
doi: 10.1007/s11071-008-9454-z. |
[14] |
S. Cai, J. Zhou, L. Xiang and Z. Liu, Robust impulsive synchronization of complex delayed dynamical networks,, Physics Letters A, 372 (2008), 4990.
doi: 10.1016/j.physleta.2008.05.077. |
[15] |
J. Lü, X. Yu and G. Chen, Chaos synchronization of general complex dynamical networks,, Physica A, 334 (2004), 281.
doi: 10.1016/j.physa.2003.10.052. |
[16] |
Z. Li, L. Jiao and J. J. Lee, Robust adaptive global synchronization of complex dynamical networks by adjusting time-varying coupling strength,, Physica A, 387 (2008), 1369.
doi: 10.1016/j.physa.2007.10.063. |
[17] |
S. Albeverio and Christof Cebulla, Synchronizability of stochastic network ensembles in a model of interacting dynamical units,, Physica A, 386 (2007), 503.
doi: 10.1016/j.physa.2007.07.036. |
[18] |
S. Wen, S. Chen and W. Guo, Adaptive global synchronization of a general complex dynamical network with non-delayed and delayed coupling,, Physics Letters A, 372 (2008), 6340.
doi: 10.1016/j.physleta.2008.08.059. |
[19] |
D. Goldstein and K. Kobayashi, On the complexity of network synchronization,, SIAM Journal on Computing, 35 (2005), 567.
doi: 10.1137/S0097539705447086. |
[20] |
J. Zhou, L. Xiang and Z. Liu, Global synchronization in general complex delayed dynamical networks and its applications,, Physica A, 385 (2007), 729.
doi: 10.1016/j.physa.2007.07.006. |
[21] |
Z. X. Liu, Z. Q. Chen and Z. Z. Yuan, Pinning control of weighted general complex dynamical networks with time delay,, Physica A, 375 (2007), 345.
doi: 10.1016/j.physa.2006.09.009. |
[22] |
W. W. Yu, A LMI-based approach to global asymptotic stability of neural networks with time varying delays,, Nonlinear Dynamics, 48 (2007), 165.
doi: 10.1007/s11071-006-9080-6. |
[23] |
C. Li and X. Liao, Anti-synchronization of a class of coupled chaotic systems via linear feedback control,, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 16 (2006), 1041.
doi: 10.1142/S0218127406015295. |
[24] |
X. Liao, S. Guo and C. Li, Stability and bifurcation analysis in tri-neuron model with time delay,, Nonlinear Dynamics, 49 (2007), 319.
doi: 10.1007/s11071-006-9137-6. |
[25] |
J. Wu and L. Jiao, Synchronization in complex dynamical networks with nonsymmetric coupling,, Physica D, 237 (2008), 2487.
doi: 10.1016/j.physd.2008.03.002. |
show all references
References:
[1] |
S. H. Strogatz, Exploring complex networks,, Nature, 410 (2001), 268.
doi: 10.1038/35065725. |
[2] |
R. Albert and A. L. BarabIasi, Statistical mechanics of complex networks,, Rev. Mod. Phys., 74 (2002), 47.
doi: 10.1103/RevModPhys.74.47. |
[3] |
J. Wu and L. Jiao, Synchronization in complex delayed dynamical networks with nonsymmetric coupling,, Physica A, 386 (2007), 513.
doi: 10.1016/j.physa.2007.07.052. |
[4] |
T. Liu, G. M. Dimirovskib and J. Zhao, Exponential synchronization of complex delayed dynamical networks with general topology,, Physica A, 387 (2008), 643.
doi: 10.1016/j.physa.2007.09.019. |
[5] |
P. Li and Z. Yi, Synchronization analysis of delayed complex networks with time-varying couplings,, Physica A, 387 (2008), 3729.
doi: 10.1016/j.physa.2008.02.008. |
[6] |
C. Li and G. Chen, Synchronization in general complex dynamical networks with coupling delays,, Physica A, 343 (2004), 263.
doi: 10.1016/j.physa.2004.05.058. |
[7] |
J. Lu and D. W. C. Ho, Local and global synchronization in general complex dynamical networks with delay coupling,, Chaos, 37 (2008), 1497.
doi: 10.1016/j.chaos.2006.10.030. |
[8] |
C. P. Li, W. G. Sun and J. Kurths, Synchronization of complex dynamical networks with time delays,, Physica A, 361 (2006), 24.
doi: 10.1016/j.physa.2005.07.007. |
[9] |
X. Q. Wu, Synchronization-based topology identification of weighted general complex dynamical networks with time-varying coupling delay,, Physica A, 387 (2008), 997.
doi: 10.1016/j.physa.2007.10.030. |
[10] |
W. Yu, J. Cao and J. Lü, Global synchronization of linearly hybrid coupled networks with time-varying delay,, SIAM Journal on Applied Dynamical Systems, 7 (2008), 108.
doi: 10.1137/070679090. |
[11] |
J. Lu and J. Cao, Synchronization-based approach for parameters identification in delayed chaotic neural networks,, Physica A, 382 (2007), 672.
doi: 10.1016/j.physa.2007.04.021. |
[12] |
J. Lu and J. D. Cao, Adaptive synchronization of uncertain dynamical networks with delayed coupling,, Nonlinear Dynamics, 53 (2008), 107.
doi: 10.1007/s11071-007-9299-x. |
[13] |
H. Huang, G. Feng and J. Cao, Exponential synchronization of chaotic Lur'e systems with delayed feedback control,, Nonlinear Dynamics, 57 (2009), 441.
doi: 10.1007/s11071-008-9454-z. |
[14] |
S. Cai, J. Zhou, L. Xiang and Z. Liu, Robust impulsive synchronization of complex delayed dynamical networks,, Physics Letters A, 372 (2008), 4990.
doi: 10.1016/j.physleta.2008.05.077. |
[15] |
J. Lü, X. Yu and G. Chen, Chaos synchronization of general complex dynamical networks,, Physica A, 334 (2004), 281.
doi: 10.1016/j.physa.2003.10.052. |
[16] |
Z. Li, L. Jiao and J. J. Lee, Robust adaptive global synchronization of complex dynamical networks by adjusting time-varying coupling strength,, Physica A, 387 (2008), 1369.
doi: 10.1016/j.physa.2007.10.063. |
[17] |
S. Albeverio and Christof Cebulla, Synchronizability of stochastic network ensembles in a model of interacting dynamical units,, Physica A, 386 (2007), 503.
doi: 10.1016/j.physa.2007.07.036. |
[18] |
S. Wen, S. Chen and W. Guo, Adaptive global synchronization of a general complex dynamical network with non-delayed and delayed coupling,, Physics Letters A, 372 (2008), 6340.
doi: 10.1016/j.physleta.2008.08.059. |
[19] |
D. Goldstein and K. Kobayashi, On the complexity of network synchronization,, SIAM Journal on Computing, 35 (2005), 567.
doi: 10.1137/S0097539705447086. |
[20] |
J. Zhou, L. Xiang and Z. Liu, Global synchronization in general complex delayed dynamical networks and its applications,, Physica A, 385 (2007), 729.
doi: 10.1016/j.physa.2007.07.006. |
[21] |
Z. X. Liu, Z. Q. Chen and Z. Z. Yuan, Pinning control of weighted general complex dynamical networks with time delay,, Physica A, 375 (2007), 345.
doi: 10.1016/j.physa.2006.09.009. |
[22] |
W. W. Yu, A LMI-based approach to global asymptotic stability of neural networks with time varying delays,, Nonlinear Dynamics, 48 (2007), 165.
doi: 10.1007/s11071-006-9080-6. |
[23] |
C. Li and X. Liao, Anti-synchronization of a class of coupled chaotic systems via linear feedback control,, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 16 (2006), 1041.
doi: 10.1142/S0218127406015295. |
[24] |
X. Liao, S. Guo and C. Li, Stability and bifurcation analysis in tri-neuron model with time delay,, Nonlinear Dynamics, 49 (2007), 319.
doi: 10.1007/s11071-006-9137-6. |
[25] |
J. Wu and L. Jiao, Synchronization in complex dynamical networks with nonsymmetric coupling,, Physica D, 237 (2008), 2487.
doi: 10.1016/j.physd.2008.03.002. |
[1] |
Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017 |
[2] |
Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021004 |
[3] |
Leslaw Skrzypek, Yuncheng You. Feedback synchronization of FHN cellular neural networks. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021001 |
[4] |
Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283 |
[5] |
Zhimin Li, Tailei Zhang, Xiuqing Li. Threshold dynamics of stochastic models with time delays: A case study for Yunnan, China. Electronic Research Archive, 2021, 29 (1) : 1661-1679. doi: 10.3934/era.2020085 |
[6] |
Xiaoxian Tang, Jie Wang. Bistability of sequestration networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1337-1357. doi: 10.3934/dcdsb.2020165 |
[7] |
Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020406 |
[8] |
D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346 |
[9] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[10] |
Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020 doi: 10.3934/jcd.2021006 |
[11] |
Pedro Aceves-Sanchez, Benjamin Aymard, Diane Peurichard, Pol Kennel, Anne Lorsignol, Franck Plouraboué, Louis Casteilla, Pierre Degond. A new model for the emergence of blood capillary networks. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2021001 |
[12] |
Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321 |
[13] |
Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106 |
[14] |
Shigui Ruan. Nonlinear dynamics in tumor-immune system interaction models with delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 541-602. doi: 10.3934/dcdsb.2020282 |
[15] |
Yicheng Liu, Yipeng Chen, Jun Wu, Xiao Wang. Periodic consensus in network systems with general distributed processing delays. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2021002 |
[16] |
Lin Shi, Dingshi Li, Kening Lu. Limiting behavior of unstable manifolds for spdes in varying phase spaces. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021020 |
[17] |
Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020377 |
[18] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
[19] |
João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138 |
[20] |
Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]