-
Previous Article
Unboundedness of solutions for perturbed asymmetric oscillators
- DCDS-B Home
- This Issue
-
Next Article
Positive periodic solution for Brillouin electron beam focusing system
Local and global exponential synchronization of complex delayed dynamical networks with general topology
1. | National Key Laboratory of Science and Technology on Holistic Control, School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China |
2. | College of Mathematics Science, Chongqing Normal University, Chongqing 400047, China |
3. | Department of Mathematics and Science, Texas A&M University at Qatar, PO Box 23874, Doha, Qatar |
4. | Department of Mathematics, Southern Illinois University, Carbondale, IL 62901, United States |
References:
[1] |
S. H. Strogatz, Exploring complex networks,, Nature, 410 (2001), 268.
doi: 10.1038/35065725. |
[2] |
R. Albert and A. L. BarabIasi, Statistical mechanics of complex networks,, Rev. Mod. Phys., 74 (2002), 47.
doi: 10.1103/RevModPhys.74.47. |
[3] |
J. Wu and L. Jiao, Synchronization in complex delayed dynamical networks with nonsymmetric coupling,, Physica A, 386 (2007), 513.
doi: 10.1016/j.physa.2007.07.052. |
[4] |
T. Liu, G. M. Dimirovskib and J. Zhao, Exponential synchronization of complex delayed dynamical networks with general topology,, Physica A, 387 (2008), 643.
doi: 10.1016/j.physa.2007.09.019. |
[5] |
P. Li and Z. Yi, Synchronization analysis of delayed complex networks with time-varying couplings,, Physica A, 387 (2008), 3729.
doi: 10.1016/j.physa.2008.02.008. |
[6] |
C. Li and G. Chen, Synchronization in general complex dynamical networks with coupling delays,, Physica A, 343 (2004), 263.
doi: 10.1016/j.physa.2004.05.058. |
[7] |
J. Lu and D. W. C. Ho, Local and global synchronization in general complex dynamical networks with delay coupling,, Chaos, 37 (2008), 1497.
doi: 10.1016/j.chaos.2006.10.030. |
[8] |
C. P. Li, W. G. Sun and J. Kurths, Synchronization of complex dynamical networks with time delays,, Physica A, 361 (2006), 24.
doi: 10.1016/j.physa.2005.07.007. |
[9] |
X. Q. Wu, Synchronization-based topology identification of weighted general complex dynamical networks with time-varying coupling delay,, Physica A, 387 (2008), 997.
doi: 10.1016/j.physa.2007.10.030. |
[10] |
W. Yu, J. Cao and J. Lü, Global synchronization of linearly hybrid coupled networks with time-varying delay,, SIAM Journal on Applied Dynamical Systems, 7 (2008), 108.
doi: 10.1137/070679090. |
[11] |
J. Lu and J. Cao, Synchronization-based approach for parameters identification in delayed chaotic neural networks,, Physica A, 382 (2007), 672.
doi: 10.1016/j.physa.2007.04.021. |
[12] |
J. Lu and J. D. Cao, Adaptive synchronization of uncertain dynamical networks with delayed coupling,, Nonlinear Dynamics, 53 (2008), 107.
doi: 10.1007/s11071-007-9299-x. |
[13] |
H. Huang, G. Feng and J. Cao, Exponential synchronization of chaotic Lur'e systems with delayed feedback control,, Nonlinear Dynamics, 57 (2009), 441.
doi: 10.1007/s11071-008-9454-z. |
[14] |
S. Cai, J. Zhou, L. Xiang and Z. Liu, Robust impulsive synchronization of complex delayed dynamical networks,, Physics Letters A, 372 (2008), 4990.
doi: 10.1016/j.physleta.2008.05.077. |
[15] |
J. Lü, X. Yu and G. Chen, Chaos synchronization of general complex dynamical networks,, Physica A, 334 (2004), 281.
doi: 10.1016/j.physa.2003.10.052. |
[16] |
Z. Li, L. Jiao and J. J. Lee, Robust adaptive global synchronization of complex dynamical networks by adjusting time-varying coupling strength,, Physica A, 387 (2008), 1369.
doi: 10.1016/j.physa.2007.10.063. |
[17] |
S. Albeverio and Christof Cebulla, Synchronizability of stochastic network ensembles in a model of interacting dynamical units,, Physica A, 386 (2007), 503.
doi: 10.1016/j.physa.2007.07.036. |
[18] |
S. Wen, S. Chen and W. Guo, Adaptive global synchronization of a general complex dynamical network with non-delayed and delayed coupling,, Physics Letters A, 372 (2008), 6340.
doi: 10.1016/j.physleta.2008.08.059. |
[19] |
D. Goldstein and K. Kobayashi, On the complexity of network synchronization,, SIAM Journal on Computing, 35 (2005), 567.
doi: 10.1137/S0097539705447086. |
[20] |
J. Zhou, L. Xiang and Z. Liu, Global synchronization in general complex delayed dynamical networks and its applications,, Physica A, 385 (2007), 729.
doi: 10.1016/j.physa.2007.07.006. |
[21] |
Z. X. Liu, Z. Q. Chen and Z. Z. Yuan, Pinning control of weighted general complex dynamical networks with time delay,, Physica A, 375 (2007), 345.
doi: 10.1016/j.physa.2006.09.009. |
[22] |
W. W. Yu, A LMI-based approach to global asymptotic stability of neural networks with time varying delays,, Nonlinear Dynamics, 48 (2007), 165.
doi: 10.1007/s11071-006-9080-6. |
[23] |
C. Li and X. Liao, Anti-synchronization of a class of coupled chaotic systems via linear feedback control,, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 16 (2006), 1041.
doi: 10.1142/S0218127406015295. |
[24] |
X. Liao, S. Guo and C. Li, Stability and bifurcation analysis in tri-neuron model with time delay,, Nonlinear Dynamics, 49 (2007), 319.
doi: 10.1007/s11071-006-9137-6. |
[25] |
J. Wu and L. Jiao, Synchronization in complex dynamical networks with nonsymmetric coupling,, Physica D, 237 (2008), 2487.
doi: 10.1016/j.physd.2008.03.002. |
show all references
References:
[1] |
S. H. Strogatz, Exploring complex networks,, Nature, 410 (2001), 268.
doi: 10.1038/35065725. |
[2] |
R. Albert and A. L. BarabIasi, Statistical mechanics of complex networks,, Rev. Mod. Phys., 74 (2002), 47.
doi: 10.1103/RevModPhys.74.47. |
[3] |
J. Wu and L. Jiao, Synchronization in complex delayed dynamical networks with nonsymmetric coupling,, Physica A, 386 (2007), 513.
doi: 10.1016/j.physa.2007.07.052. |
[4] |
T. Liu, G. M. Dimirovskib and J. Zhao, Exponential synchronization of complex delayed dynamical networks with general topology,, Physica A, 387 (2008), 643.
doi: 10.1016/j.physa.2007.09.019. |
[5] |
P. Li and Z. Yi, Synchronization analysis of delayed complex networks with time-varying couplings,, Physica A, 387 (2008), 3729.
doi: 10.1016/j.physa.2008.02.008. |
[6] |
C. Li and G. Chen, Synchronization in general complex dynamical networks with coupling delays,, Physica A, 343 (2004), 263.
doi: 10.1016/j.physa.2004.05.058. |
[7] |
J. Lu and D. W. C. Ho, Local and global synchronization in general complex dynamical networks with delay coupling,, Chaos, 37 (2008), 1497.
doi: 10.1016/j.chaos.2006.10.030. |
[8] |
C. P. Li, W. G. Sun and J. Kurths, Synchronization of complex dynamical networks with time delays,, Physica A, 361 (2006), 24.
doi: 10.1016/j.physa.2005.07.007. |
[9] |
X. Q. Wu, Synchronization-based topology identification of weighted general complex dynamical networks with time-varying coupling delay,, Physica A, 387 (2008), 997.
doi: 10.1016/j.physa.2007.10.030. |
[10] |
W. Yu, J. Cao and J. Lü, Global synchronization of linearly hybrid coupled networks with time-varying delay,, SIAM Journal on Applied Dynamical Systems, 7 (2008), 108.
doi: 10.1137/070679090. |
[11] |
J. Lu and J. Cao, Synchronization-based approach for parameters identification in delayed chaotic neural networks,, Physica A, 382 (2007), 672.
doi: 10.1016/j.physa.2007.04.021. |
[12] |
J. Lu and J. D. Cao, Adaptive synchronization of uncertain dynamical networks with delayed coupling,, Nonlinear Dynamics, 53 (2008), 107.
doi: 10.1007/s11071-007-9299-x. |
[13] |
H. Huang, G. Feng and J. Cao, Exponential synchronization of chaotic Lur'e systems with delayed feedback control,, Nonlinear Dynamics, 57 (2009), 441.
doi: 10.1007/s11071-008-9454-z. |
[14] |
S. Cai, J. Zhou, L. Xiang and Z. Liu, Robust impulsive synchronization of complex delayed dynamical networks,, Physics Letters A, 372 (2008), 4990.
doi: 10.1016/j.physleta.2008.05.077. |
[15] |
J. Lü, X. Yu and G. Chen, Chaos synchronization of general complex dynamical networks,, Physica A, 334 (2004), 281.
doi: 10.1016/j.physa.2003.10.052. |
[16] |
Z. Li, L. Jiao and J. J. Lee, Robust adaptive global synchronization of complex dynamical networks by adjusting time-varying coupling strength,, Physica A, 387 (2008), 1369.
doi: 10.1016/j.physa.2007.10.063. |
[17] |
S. Albeverio and Christof Cebulla, Synchronizability of stochastic network ensembles in a model of interacting dynamical units,, Physica A, 386 (2007), 503.
doi: 10.1016/j.physa.2007.07.036. |
[18] |
S. Wen, S. Chen and W. Guo, Adaptive global synchronization of a general complex dynamical network with non-delayed and delayed coupling,, Physics Letters A, 372 (2008), 6340.
doi: 10.1016/j.physleta.2008.08.059. |
[19] |
D. Goldstein and K. Kobayashi, On the complexity of network synchronization,, SIAM Journal on Computing, 35 (2005), 567.
doi: 10.1137/S0097539705447086. |
[20] |
J. Zhou, L. Xiang and Z. Liu, Global synchronization in general complex delayed dynamical networks and its applications,, Physica A, 385 (2007), 729.
doi: 10.1016/j.physa.2007.07.006. |
[21] |
Z. X. Liu, Z. Q. Chen and Z. Z. Yuan, Pinning control of weighted general complex dynamical networks with time delay,, Physica A, 375 (2007), 345.
doi: 10.1016/j.physa.2006.09.009. |
[22] |
W. W. Yu, A LMI-based approach to global asymptotic stability of neural networks with time varying delays,, Nonlinear Dynamics, 48 (2007), 165.
doi: 10.1007/s11071-006-9080-6. |
[23] |
C. Li and X. Liao, Anti-synchronization of a class of coupled chaotic systems via linear feedback control,, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 16 (2006), 1041.
doi: 10.1142/S0218127406015295. |
[24] |
X. Liao, S. Guo and C. Li, Stability and bifurcation analysis in tri-neuron model with time delay,, Nonlinear Dynamics, 49 (2007), 319.
doi: 10.1007/s11071-006-9137-6. |
[25] |
J. Wu and L. Jiao, Synchronization in complex dynamical networks with nonsymmetric coupling,, Physica D, 237 (2008), 2487.
doi: 10.1016/j.physd.2008.03.002. |
[1] |
Ruoxia Li, Huaiqin Wu, Xiaowei Zhang, Rong Yao. Adaptive projective synchronization of memristive neural networks with time-varying delays and stochastic perturbation. Mathematical Control & Related Fields, 2015, 5 (4) : 827-844. doi: 10.3934/mcrf.2015.5.827 |
[2] |
Tingwen Huang, Guanrong Chen, Juergen Kurths. Synchronization of chaotic systems with time-varying coupling delays. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1071-1082. doi: 10.3934/dcdsb.2011.16.1071 |
[3] |
Serge Nicaise, Julie Valein, Emilia Fridman. Stability of the heat and of the wave equations with boundary time-varying delays. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 559-581. doi: 10.3934/dcdss.2009.2.559 |
[4] |
Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693 |
[5] |
Tingting Su, Xinsong Yang. Finite-time synchronization of competitive neural networks with mixed delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3655-3667. doi: 10.3934/dcdsb.2016115 |
[6] |
Wei Feng, Xin Lu. Global stability in a class of reaction-diffusion systems with time-varying delays. Conference Publications, 1998, 1998 (Special) : 253-261. doi: 10.3934/proc.1998.1998.253 |
[7] |
Hongbiao Fan, Jun-E Feng, Min Meng. Piecewise observers of rectangular discrete fuzzy descriptor systems with multiple time-varying delays. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1535-1556. doi: 10.3934/jimo.2016.12.1535 |
[8] |
Wenlian Lu, Fatihcan M. Atay, Jürgen Jost. Consensus and synchronization in discrete-time networks of multi-agents with stochastically switching topologies and time delays. Networks & Heterogeneous Media, 2011, 6 (2) : 329-349. doi: 10.3934/nhm.2011.6.329 |
[9] |
Xiwei Liu, Tianping Chen, Wenlian Lu. Cluster synchronization for linearly coupled complex networks. Journal of Industrial & Management Optimization, 2011, 7 (1) : 87-101. doi: 10.3934/jimo.2011.7.87 |
[10] |
Shu Zhang, Jian Xu. Time-varying delayed feedback control for an internet congestion control model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 653-668. doi: 10.3934/dcdsb.2011.16.653 |
[11] |
Roberta Fabbri, Russell Johnson, Sylvia Novo, Carmen Núñez. On linear-quadratic dissipative control processes with time-varying coefficients. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 193-210. doi: 10.3934/dcds.2013.33.193 |
[12] |
Zhen Zhang, Jianhua Huang, Xueke Pu. Pullback attractors of FitzHugh-Nagumo system on the time-varying domains. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3691-3706. doi: 10.3934/dcdsb.2017150 |
[13] |
Robert G. McLeod, John F. Brewster, Abba B. Gumel, Dean A. Slonowsky. Sensitivity and uncertainty analyses for a SARS model with time-varying inputs and outputs. Mathematical Biosciences & Engineering, 2006, 3 (3) : 527-544. doi: 10.3934/mbe.2006.3.527 |
[14] |
Yangzi Hu, Fuke Wu. The improved results on the stochastic Kolmogorov system with time-varying delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1481-1497. doi: 10.3934/dcdsb.2015.20.1481 |
[15] |
Di Wu, Yanqin Bai, Fusheng Xie. Time-scaling transformation for optimal control problem with time-varying delay. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020098 |
[16] |
Raoul-Martin Memmesheimer, Marc Timme. Stable and unstable periodic orbits in complex networks of spiking neurons with delays. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1555-1588. doi: 10.3934/dcds.2010.28.1555 |
[17] |
Dinh Cong Huong, Mai Viet Thuan. State transformations of time-varying delay systems and their applications to state observer design. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 413-444. doi: 10.3934/dcdss.2017020 |
[18] |
Hongjie Dong, Seick Kim. Green's functions for parabolic systems of second order in time-varying domains. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1407-1433. doi: 10.3934/cpaa.2014.13.1407 |
[19] |
Xiao Wang, Zhaohui Yang, Xiongwei Liu. Periodic and almost periodic oscillations in a delay differential equation system with time-varying coefficients. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6123-6138. doi: 10.3934/dcds.2017263 |
[20] |
Mokhtar Kirane, Belkacem Said-Houari, Mohamed Naim Anwar. Stability result for the Timoshenko system with a time-varying delay term in the internal feedbacks. Communications on Pure & Applied Analysis, 2011, 10 (2) : 667-686. doi: 10.3934/cpaa.2011.10.667 |
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]