July  2011, 16(1): 393-408. doi: 10.3934/dcdsb.2011.16.393

Local and global exponential synchronization of complex delayed dynamical networks with general topology

1. 

National Key Laboratory of Science and Technology on Holistic Control, School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China

2. 

College of Mathematics Science, Chongqing Normal University, Chongqing 400047, China

3. 

Department of Mathematics and Science, Texas A&M University at Qatar, PO Box 23874, Doha, Qatar

4. 

Department of Mathematics, Southern Illinois University, Carbondale, IL 62901, United States

Received  June 2010 Revised  January 2011 Published  April 2011

In this paper, we consider a generalized complex network possessing general topology, in which the coupling may be nonlinear, time-varying, nonsymmetric and the elements of each node have different time-varying delays. Some criteria on local and global exponential synchronization are derived in form of linear matrix inequalities (LMIs) for the complex network by constructing suitable Lyapunov functionals. Our results show that the obtained sufficient conditions are less conservative than ones in previous publications. Finally, two numerical examples and their simulation results are given to illustrate the effectiveness of the derived results.
Citation: Jin-Liang Wang, Zhi-Chun Yang, Tingwen Huang, Mingqing Xiao. Local and global exponential synchronization of complex delayed dynamical networks with general topology. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 393-408. doi: 10.3934/dcdsb.2011.16.393
References:
[1]

S. H. Strogatz, Exploring complex networks, Nature, 410 (2001), 268-276. doi: 10.1038/35065725.

[2]

R. Albert and A. L. BarabIasi, Statistical mechanics of complex networks, Rev. Mod. Phys., 74 (2002), 47-97. doi: 10.1103/RevModPhys.74.47.

[3]

J. Wu and L. Jiao, Synchronization in complex delayed dynamical networks with nonsymmetric coupling, Physica A, 386 (2007), 513-530. doi: 10.1016/j.physa.2007.07.052.

[4]

T. Liu, G. M. Dimirovskib and J. Zhao, Exponential synchronization of complex delayed dynamical networks with general topology, Physica A, 387 (2008), 643-652. doi: 10.1016/j.physa.2007.09.019.

[5]

P. Li and Z. Yi, Synchronization analysis of delayed complex networks with time-varying couplings, Physica A, 387 (2008), 3729-3737. doi: 10.1016/j.physa.2008.02.008.

[6]

C. Li and G. Chen, Synchronization in general complex dynamical networks with coupling delays, Physica A, 343 (2004), 263-278. doi: 10.1016/j.physa.2004.05.058.

[7]

J. Lu and D. W. C. Ho, Local and global synchronization in general complex dynamical networks with delay coupling, Chaos, Solitons & Fractals, 37 (2008), 1497-1510. doi: 10.1016/j.chaos.2006.10.030.

[8]

C. P. Li, W. G. Sun and J. Kurths, Synchronization of complex dynamical networks with time delays, Physica A, 361 (2006), 24-34. doi: 10.1016/j.physa.2005.07.007.

[9]

X. Q. Wu, Synchronization-based topology identification of weighted general complex dynamical networks with time-varying coupling delay, Physica A, 387 (2008), 997-1008. doi: 10.1016/j.physa.2007.10.030.

[10]

W. Yu, J. Cao and J. Lü, Global synchronization of linearly hybrid coupled networks with time-varying delay, SIAM Journal on Applied Dynamical Systems, 7 (2008), 108-133. doi: 10.1137/070679090.

[11]

J. Lu and J. Cao, Synchronization-based approach for parameters identification in delayed chaotic neural networks, Physica A, 382 (2007), 672-682. doi: 10.1016/j.physa.2007.04.021.

[12]

J. Lu and J. D. Cao, Adaptive synchronization of uncertain dynamical networks with delayed coupling, Nonlinear Dynamics, 53 (2008), 107-115. doi: 10.1007/s11071-007-9299-x.

[13]

H. Huang, G. Feng and J. Cao, Exponential synchronization of chaotic Lur'e systems with delayed feedback control, Nonlinear Dynamics, 57 (2009), 441-453. doi: 10.1007/s11071-008-9454-z.

[14]

S. Cai, J. Zhou, L. Xiang and Z. Liu, Robust impulsive synchronization of complex delayed dynamical networks, Physics Letters A, 372 (2008), 4990-4995. doi: 10.1016/j.physleta.2008.05.077.

[15]

J. Lü, X. Yu and G. Chen, Chaos synchronization of general complex dynamical networks, Physica A, 334 (2004), 281-302. doi: 10.1016/j.physa.2003.10.052.

[16]

Z. Li, L. Jiao and J. J. Lee, Robust adaptive global synchronization of complex dynamical networks by adjusting time-varying coupling strength, Physica A, 387 (2008), 1369-1380. doi: 10.1016/j.physa.2007.10.063.

[17]

S. Albeverio and Christof Cebulla, Synchronizability of stochastic network ensembles in a model of interacting dynamical units, Physica A, 386 (2007), 503-512. doi: 10.1016/j.physa.2007.07.036.

[18]

S. Wen, S. Chen and W. Guo, Adaptive global synchronization of a general complex dynamical network with non-delayed and delayed coupling, Physics Letters A, 372 (2008), 6340-6346. doi: 10.1016/j.physleta.2008.08.059.

[19]

D. Goldstein and K. Kobayashi, On the complexity of network synchronization, SIAM Journal on Computing, 35 (2005), 567-589. doi: 10.1137/S0097539705447086.

[20]

J. Zhou, L. Xiang and Z. Liu, Global synchronization in general complex delayed dynamical networks and its applications, Physica A, 385 (2007), 729-742. doi: 10.1016/j.physa.2007.07.006.

[21]

Z. X. Liu, Z. Q. Chen and Z. Z. Yuan, Pinning control of weighted general complex dynamical networks with time delay, Physica A, 375 (2007), 345-354. doi: 10.1016/j.physa.2006.09.009.

[22]

W. W. Yu, A LMI-based approach to global asymptotic stability of neural networks with time varying delays, Nonlinear Dynamics, 48 (2007), 165-174. doi: 10.1007/s11071-006-9080-6.

[23]

C. Li and X. Liao, Anti-synchronization of a class of coupled chaotic systems via linear feedback control, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 16 (2006), 1041-1047. doi: 10.1142/S0218127406015295.

[24]

X. Liao, S. Guo and C. Li, Stability and bifurcation analysis in tri-neuron model with time delay, Nonlinear Dynamics, 49 (2007), 319-345. doi: 10.1007/s11071-006-9137-6.

[25]

J. Wu and L. Jiao, Synchronization in complex dynamical networks with nonsymmetric coupling, Physica D, 237 (2008), 2487-2498. doi: 10.1016/j.physd.2008.03.002.

show all references

References:
[1]

S. H. Strogatz, Exploring complex networks, Nature, 410 (2001), 268-276. doi: 10.1038/35065725.

[2]

R. Albert and A. L. BarabIasi, Statistical mechanics of complex networks, Rev. Mod. Phys., 74 (2002), 47-97. doi: 10.1103/RevModPhys.74.47.

[3]

J. Wu and L. Jiao, Synchronization in complex delayed dynamical networks with nonsymmetric coupling, Physica A, 386 (2007), 513-530. doi: 10.1016/j.physa.2007.07.052.

[4]

T. Liu, G. M. Dimirovskib and J. Zhao, Exponential synchronization of complex delayed dynamical networks with general topology, Physica A, 387 (2008), 643-652. doi: 10.1016/j.physa.2007.09.019.

[5]

P. Li and Z. Yi, Synchronization analysis of delayed complex networks with time-varying couplings, Physica A, 387 (2008), 3729-3737. doi: 10.1016/j.physa.2008.02.008.

[6]

C. Li and G. Chen, Synchronization in general complex dynamical networks with coupling delays, Physica A, 343 (2004), 263-278. doi: 10.1016/j.physa.2004.05.058.

[7]

J. Lu and D. W. C. Ho, Local and global synchronization in general complex dynamical networks with delay coupling, Chaos, Solitons & Fractals, 37 (2008), 1497-1510. doi: 10.1016/j.chaos.2006.10.030.

[8]

C. P. Li, W. G. Sun and J. Kurths, Synchronization of complex dynamical networks with time delays, Physica A, 361 (2006), 24-34. doi: 10.1016/j.physa.2005.07.007.

[9]

X. Q. Wu, Synchronization-based topology identification of weighted general complex dynamical networks with time-varying coupling delay, Physica A, 387 (2008), 997-1008. doi: 10.1016/j.physa.2007.10.030.

[10]

W. Yu, J. Cao and J. Lü, Global synchronization of linearly hybrid coupled networks with time-varying delay, SIAM Journal on Applied Dynamical Systems, 7 (2008), 108-133. doi: 10.1137/070679090.

[11]

J. Lu and J. Cao, Synchronization-based approach for parameters identification in delayed chaotic neural networks, Physica A, 382 (2007), 672-682. doi: 10.1016/j.physa.2007.04.021.

[12]

J. Lu and J. D. Cao, Adaptive synchronization of uncertain dynamical networks with delayed coupling, Nonlinear Dynamics, 53 (2008), 107-115. doi: 10.1007/s11071-007-9299-x.

[13]

H. Huang, G. Feng and J. Cao, Exponential synchronization of chaotic Lur'e systems with delayed feedback control, Nonlinear Dynamics, 57 (2009), 441-453. doi: 10.1007/s11071-008-9454-z.

[14]

S. Cai, J. Zhou, L. Xiang and Z. Liu, Robust impulsive synchronization of complex delayed dynamical networks, Physics Letters A, 372 (2008), 4990-4995. doi: 10.1016/j.physleta.2008.05.077.

[15]

J. Lü, X. Yu and G. Chen, Chaos synchronization of general complex dynamical networks, Physica A, 334 (2004), 281-302. doi: 10.1016/j.physa.2003.10.052.

[16]

Z. Li, L. Jiao and J. J. Lee, Robust adaptive global synchronization of complex dynamical networks by adjusting time-varying coupling strength, Physica A, 387 (2008), 1369-1380. doi: 10.1016/j.physa.2007.10.063.

[17]

S. Albeverio and Christof Cebulla, Synchronizability of stochastic network ensembles in a model of interacting dynamical units, Physica A, 386 (2007), 503-512. doi: 10.1016/j.physa.2007.07.036.

[18]

S. Wen, S. Chen and W. Guo, Adaptive global synchronization of a general complex dynamical network with non-delayed and delayed coupling, Physics Letters A, 372 (2008), 6340-6346. doi: 10.1016/j.physleta.2008.08.059.

[19]

D. Goldstein and K. Kobayashi, On the complexity of network synchronization, SIAM Journal on Computing, 35 (2005), 567-589. doi: 10.1137/S0097539705447086.

[20]

J. Zhou, L. Xiang and Z. Liu, Global synchronization in general complex delayed dynamical networks and its applications, Physica A, 385 (2007), 729-742. doi: 10.1016/j.physa.2007.07.006.

[21]

Z. X. Liu, Z. Q. Chen and Z. Z. Yuan, Pinning control of weighted general complex dynamical networks with time delay, Physica A, 375 (2007), 345-354. doi: 10.1016/j.physa.2006.09.009.

[22]

W. W. Yu, A LMI-based approach to global asymptotic stability of neural networks with time varying delays, Nonlinear Dynamics, 48 (2007), 165-174. doi: 10.1007/s11071-006-9080-6.

[23]

C. Li and X. Liao, Anti-synchronization of a class of coupled chaotic systems via linear feedback control, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 16 (2006), 1041-1047. doi: 10.1142/S0218127406015295.

[24]

X. Liao, S. Guo and C. Li, Stability and bifurcation analysis in tri-neuron model with time delay, Nonlinear Dynamics, 49 (2007), 319-345. doi: 10.1007/s11071-006-9137-6.

[25]

J. Wu and L. Jiao, Synchronization in complex dynamical networks with nonsymmetric coupling, Physica D, 237 (2008), 2487-2498. doi: 10.1016/j.physd.2008.03.002.

[1]

Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221

[2]

Ruoxia Li, Huaiqin Wu, Xiaowei Zhang, Rong Yao. Adaptive projective synchronization of memristive neural networks with time-varying delays and stochastic perturbation. Mathematical Control and Related Fields, 2015, 5 (4) : 827-844. doi: 10.3934/mcrf.2015.5.827

[3]

Tingwen Huang, Guanrong Chen, Juergen Kurths. Synchronization of chaotic systems with time-varying coupling delays. Discrete and Continuous Dynamical Systems - B, 2011, 16 (4) : 1071-1082. doi: 10.3934/dcdsb.2011.16.1071

[4]

M. Syed Ali, L. Palanisamy, Nallappan Gunasekaran, Ahmed Alsaedi, Bashir Ahmad. Finite-time exponential synchronization of reaction-diffusion delayed complex-dynamical networks. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1465-1477. doi: 10.3934/dcdss.2020395

[5]

Serge Nicaise, Julie Valein, Emilia Fridman. Stability of the heat and of the wave equations with boundary time-varying delays. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 559-581. doi: 10.3934/dcdss.2009.2.559

[6]

Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693

[7]

Baowei Feng, Carlos Alberto Raposo, Carlos Alberto Nonato, Abdelaziz Soufyane. Analysis of exponential stabilization for Rao-Nakra sandwich beam with time-varying weight and time-varying delay: Multiplier method versus observability. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022011

[8]

Tingting Su, Xinsong Yang. Finite-time synchronization of competitive neural networks with mixed delays. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3655-3667. doi: 10.3934/dcdsb.2016115

[9]

Wei Feng, Xin Lu. Global stability in a class of reaction-diffusion systems with time-varying delays. Conference Publications, 1998, 1998 (Special) : 253-261. doi: 10.3934/proc.1998.1998.253

[10]

Hongbiao Fan, Jun-E Feng, Min Meng. Piecewise observers of rectangular discrete fuzzy descriptor systems with multiple time-varying delays. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1535-1556. doi: 10.3934/jimo.2016.12.1535

[11]

Chuangxia Huang, Lihong Huang, Jianhong Wu. Global population dynamics of a single species structured with distinctive time-varying maturation and self-limitation delays. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2427-2440. doi: 10.3934/dcdsb.2021138

[12]

Chuangxia Huang, Xiaojin Guo, Jinde Cao, Ardak Kashkynbayev. Bistable dynamics on a tick population equation incorporating Allee effect and two different time-varying delays. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022122

[13]

Wenlian Lu, Fatihcan M. Atay, Jürgen Jost. Consensus and synchronization in discrete-time networks of multi-agents with stochastically switching topologies and time delays. Networks and Heterogeneous Media, 2011, 6 (2) : 329-349. doi: 10.3934/nhm.2011.6.329

[14]

Yu-Jing Shi, Yan Ma. Finite/fixed-time synchronization for complex networks via quantized adaptive control. Electronic Research Archive, 2021, 29 (2) : 2047-2061. doi: 10.3934/era.2020104

[15]

Yong Zhao, Shanshan Ren. Synchronization for a class of complex-valued memristor-based competitive neural networks(CMCNNs) with different time scales. Electronic Research Archive, 2021, 29 (5) : 3323-3340. doi: 10.3934/era.2021041

[16]

Aowen Kong, Carlos Nonato, Wenjun Liu, Manoel Jeremias dos Santos, Carlos Raposo. Equivalence between exponential stabilization and observability inequality for magnetic effected piezoelectric beams with time-varying delay and time-dependent weights. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 2959-2978. doi: 10.3934/dcdsb.2021168

[17]

Xiwei Liu, Tianping Chen, Wenlian Lu. Cluster synchronization for linearly coupled complex networks. Journal of Industrial and Management Optimization, 2011, 7 (1) : 87-101. doi: 10.3934/jimo.2011.7.87

[18]

Abdelfettah Hamzaoui, Nizar Hadj Taieb, Mohamed Ali Hammami. Practical partial stability of time-varying systems. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3585-3603. doi: 10.3934/dcdsb.2021197

[19]

Carlos Nonato, Manoel Jeremias dos Santos, Carlos Raposo. Dynamics of Timoshenko system with time-varying weight and time-varying delay. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 523-553. doi: 10.3934/dcdsb.2021053

[20]

Shu Zhang, Jian Xu. Time-varying delayed feedback control for an internet congestion control model. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 653-668. doi: 10.3934/dcdsb.2011.16.653

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (70)
  • HTML views (0)
  • Cited by (25)

[Back to Top]