Citation: |
[1] |
S. H. Strogatz, Exploring complex networks, Nature, 410 (2001), 268-276.doi: 10.1038/35065725. |
[2] |
R. Albert and A. L. BarabIasi, Statistical mechanics of complex networks, Rev. Mod. Phys., 74 (2002), 47-97.doi: 10.1103/RevModPhys.74.47. |
[3] |
J. Wu and L. Jiao, Synchronization in complex delayed dynamical networks with nonsymmetric coupling, Physica A, 386 (2007), 513-530.doi: 10.1016/j.physa.2007.07.052. |
[4] |
T. Liu, G. M. Dimirovskib and J. Zhao, Exponential synchronization of complex delayed dynamical networks with general topology, Physica A, 387 (2008), 643-652.doi: 10.1016/j.physa.2007.09.019. |
[5] |
P. Li and Z. Yi, Synchronization analysis of delayed complex networks with time-varying couplings, Physica A, 387 (2008), 3729-3737.doi: 10.1016/j.physa.2008.02.008. |
[6] |
C. Li and G. Chen, Synchronization in general complex dynamical networks with coupling delays, Physica A, 343 (2004), 263-278.doi: 10.1016/j.physa.2004.05.058. |
[7] |
J. Lu and D. W. C. Ho, Local and global synchronization in general complex dynamical networks with delay coupling, Chaos, Solitons & Fractals, 37 (2008), 1497-1510.doi: 10.1016/j.chaos.2006.10.030. |
[8] |
C. P. Li, W. G. Sun and J. Kurths, Synchronization of complex dynamical networks with time delays, Physica A, 361 (2006), 24-34.doi: 10.1016/j.physa.2005.07.007. |
[9] |
X. Q. Wu, Synchronization-based topology identification of weighted general complex dynamical networks with time-varying coupling delay, Physica A, 387 (2008), 997-1008.doi: 10.1016/j.physa.2007.10.030. |
[10] |
W. Yu, J. Cao and J. Lü, Global synchronization of linearly hybrid coupled networks with time-varying delay, SIAM Journal on Applied Dynamical Systems, 7 (2008), 108-133.doi: 10.1137/070679090. |
[11] |
J. Lu and J. Cao, Synchronization-based approach for parameters identification in delayed chaotic neural networks, Physica A, 382 (2007), 672-682.doi: 10.1016/j.physa.2007.04.021. |
[12] |
J. Lu and J. D. Cao, Adaptive synchronization of uncertain dynamical networks with delayed coupling, Nonlinear Dynamics, 53 (2008), 107-115.doi: 10.1007/s11071-007-9299-x. |
[13] |
H. Huang, G. Feng and J. Cao, Exponential synchronization of chaotic Lur'e systems with delayed feedback control, Nonlinear Dynamics, 57 (2009), 441-453.doi: 10.1007/s11071-008-9454-z. |
[14] |
S. Cai, J. Zhou, L. Xiang and Z. Liu, Robust impulsive synchronization of complex delayed dynamical networks, Physics Letters A, 372 (2008), 4990-4995.doi: 10.1016/j.physleta.2008.05.077. |
[15] |
J. Lü, X. Yu and G. Chen, Chaos synchronization of general complex dynamical networks, Physica A, 334 (2004), 281-302.doi: 10.1016/j.physa.2003.10.052. |
[16] |
Z. Li, L. Jiao and J. J. Lee, Robust adaptive global synchronization of complex dynamical networks by adjusting time-varying coupling strength, Physica A, 387 (2008), 1369-1380.doi: 10.1016/j.physa.2007.10.063. |
[17] |
S. Albeverio and Christof Cebulla, Synchronizability of stochastic network ensembles in a model of interacting dynamical units, Physica A, 386 (2007), 503-512.doi: 10.1016/j.physa.2007.07.036. |
[18] |
S. Wen, S. Chen and W. Guo, Adaptive global synchronization of a general complex dynamical network with non-delayed and delayed coupling, Physics Letters A, 372 (2008), 6340-6346.doi: 10.1016/j.physleta.2008.08.059. |
[19] |
D. Goldstein and K. Kobayashi, On the complexity of network synchronization, SIAM Journal on Computing, 35 (2005), 567-589.doi: 10.1137/S0097539705447086. |
[20] |
J. Zhou, L. Xiang and Z. Liu, Global synchronization in general complex delayed dynamical networks and its applications, Physica A, 385 (2007), 729-742.doi: 10.1016/j.physa.2007.07.006. |
[21] |
Z. X. Liu, Z. Q. Chen and Z. Z. Yuan, Pinning control of weighted general complex dynamical networks with time delay, Physica A, 375 (2007), 345-354.doi: 10.1016/j.physa.2006.09.009. |
[22] |
W. W. Yu, A LMI-based approach to global asymptotic stability of neural networks with time varying delays, Nonlinear Dynamics, 48 (2007), 165-174.doi: 10.1007/s11071-006-9080-6. |
[23] |
C. Li and X. Liao, Anti-synchronization of a class of coupled chaotic systems via linear feedback control, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 16 (2006), 1041-1047.doi: 10.1142/S0218127406015295. |
[24] |
X. Liao, S. Guo and C. Li, Stability and bifurcation analysis in tri-neuron model with time delay, Nonlinear Dynamics, 49 (2007), 319-345.doi: 10.1007/s11071-006-9137-6. |
[25] |
J. Wu and L. Jiao, Synchronization in complex dynamical networks with nonsymmetric coupling, Physica D, 237 (2008), 2487-2498.doi: 10.1016/j.physd.2008.03.002. |