\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Unboundedness of solutions for perturbed asymmetric oscillators

Abstract / Introduction Related Papers Cited by
  • In this paper, we consider the existence of unbounded solutions and periodic solutions for the perturbed asymmetric oscillator with damping

    $x'' + f(x )x' + ax^+ - bx^-$ $+ g(x)=p(t), $

    where $x^+ =\max\{x,0\}, x^-$ $=\max\{-x,0\}$, $a$ and $b$ are two positive constants, $f(x)$ is a continuous function and $ p(t)$ is a $2\pi $-periodic continuous function, $g(x)$ is locally Lipschitz continuous and bounded. We discuss the existence of periodic solutions and unbounded solutions under two classes of conditions: the resonance case $\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\in Q$ and the nonresonance case $\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}} \notin Q$. Unlike many existing results in the literature where the function $g(x)$ is required to have asymptotic limits at infinity, our main results here allow $g(x)$ be oscillatory without asymptotic limits.

    Mathematics Subject Classification: Primary: 34C25, 37B30; Secondary: 37J45.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. M. Alonso and R. Ortega, Unbounded solutions of semilinear equations at resonance, Nonlinearity, 9 (1996), 1099-1111.doi: 10.1088/0951-7715/9/5/003.

    [2]

    J. M. Alonso and R. Ortega, Roots of unity and unbounded motions of an asymmetric oscillator, J. Differential Equations, 143 (1998), 201-220.doi: 10.1006/jdeq.1997.3367.

    [3]

    W. Dambrosio, A note on the existence of unbounded solutions to a perturbed asymmetric oscillator, Nonlinear Anal., 50 (2002), 333-346.doi: 10.1016/S0362-546X(01)00765-9.

    [4]

    E. N. Dancer, Boundary-value problems for weakly nonlinear ordinary differential equations, Bull. Austral. Math. Soc., 15 (1976), 321-328.doi: 10.1017/S0004972700022747.

    [5]

    E. N. Dancer, On the Dirichlet problem for weakly nonlinear elliptic partial differential equations, Proc. Roy. Soc. Edinburgh Sect.A, 76 (1976), 283-300.

    [6]

    S. Fučik, "Sovability of Nonlinear Equations and Boundary Value Problems," D. Reidel Publishing Co., Dordrecht-Boston, Mass., 1980.

    [7]

    M. Kunze, T. Küpper and B. Liu, Boundedness and unboundedness solutions of reversible oscillators at resonance, Nonlinearity, 14 (2001), 1105-1122.doi: 10.1088/0951-7715/14/5/311.

    [8]

    B. Liu, Boundedness in asymmetric oscillations, J. Math. Anal. Appl., 231 (1999), 355-373.doi: 10.1006/jmaa.1998.6219.

    [9]

    X. Li and Z. H. Zhang, Unbounded solutions and periodic solutions for second order differential equations with asymmetric nonlinearity, Proc. Amer. Math. Soc., 135 (2007), 2769-2777.doi: 10.1090/S0002-9939-07-08928-9.

    [10]

    N. J. Lloyd, "Degree Theory," Cambridge University Press, Cambridge-New York-Melbourne, 1978.

    [11]

    S. W. Ma and J. H. Wu, A small twist theorem and boundedness of solutions for semilinear Duffing equations at resonance, Nonlinear Anal., 67 (2007), 200-237.doi: 10.1016/j.na.2006.04.023.

    [12]

    L. X. Wang and S. W. MaBoundedness and unboundedness of solutions for asymmetric oscillators at resonance, Preprint.

    [13]

    Z. H. Wang, Coexistence of unbounded solutions and periodic solutions of Liénard equations with asymmetric nonlinearities at resonance, Sci. China Ser. A, 50 (2007), 1205-1216.doi: 10.1007/s11425-007-0070-z.

    [14]

    Z. H. Wang, Irrational rotation numbers and unboundedness of solutions of the second order differential equations with asymmetric nonlinearities, Proc. Amer. Math. Soc., 131 (2003), 523-531.doi: 10.1090/S0002-9939-02-06601-7.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(53) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return