July  2011, 16(1): 409-421. doi: 10.3934/dcdsb.2011.16.409

Unboundedness of solutions for perturbed asymmetric oscillators

1. 

School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China

Received  February 2010 Revised  August 2010 Published  April 2011

In this paper, we consider the existence of unbounded solutions and periodic solutions for the perturbed asymmetric oscillator with damping

$x'' + f(x )x' + ax^+ - bx^-$ $+ g(x)=p(t), $

where $x^+ =\max\{x,0\}, x^-$ $=\max\{-x,0\}$, $a$ and $b$ are two positive constants, $f(x)$ is a continuous function and $ p(t)$ is a $2\pi $-periodic continuous function, $g(x)$ is locally Lipschitz continuous and bounded. We discuss the existence of periodic solutions and unbounded solutions under two classes of conditions: the resonance case $\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\in Q$ and the nonresonance case $\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}} \notin Q$. Unlike many existing results in the literature where the function $g(x)$ is required to have asymptotic limits at infinity, our main results here allow $g(x)$ be oscillatory without asymptotic limits.

Citation: Lixia Wang, Shiwang Ma. Unboundedness of solutions for perturbed asymmetric oscillators. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 409-421. doi: 10.3934/dcdsb.2011.16.409
References:
[1]

J. M. Alonso and R. Ortega, Unbounded solutions of semilinear equations at resonance,, Nonlinearity, 9 (1996), 1099.  doi: 10.1088/0951-7715/9/5/003.  Google Scholar

[2]

J. M. Alonso and R. Ortega, Roots of unity and unbounded motions of an asymmetric oscillator,, J. Differential Equations, 143 (1998), 201.  doi: 10.1006/jdeq.1997.3367.  Google Scholar

[3]

W. Dambrosio, A note on the existence of unbounded solutions to a perturbed asymmetric oscillator,, Nonlinear Anal., 50 (2002), 333.  doi: 10.1016/S0362-546X(01)00765-9.  Google Scholar

[4]

E. N. Dancer, Boundary-value problems for weakly nonlinear ordinary differential equations,, Bull. Austral. Math. Soc., 15 (1976), 321.  doi: 10.1017/S0004972700022747.  Google Scholar

[5]

E. N. Dancer, On the Dirichlet problem for weakly nonlinear elliptic partial differential equations,, Proc. Roy. Soc. Edinburgh Sect.A, 76 (1976), 283.   Google Scholar

[6]

S. Fučik, "Sovability of Nonlinear Equations and Boundary Value Problems,", D. Reidel Publishing Co., (1980).   Google Scholar

[7]

M. Kunze, T. Küpper and B. Liu, Boundedness and unboundedness solutions of reversible oscillators at resonance,, Nonlinearity, 14 (2001), 1105.  doi: 10.1088/0951-7715/14/5/311.  Google Scholar

[8]

B. Liu, Boundedness in asymmetric oscillations,, J. Math. Anal. Appl., 231 (1999), 355.  doi: 10.1006/jmaa.1998.6219.  Google Scholar

[9]

X. Li and Z. H. Zhang, Unbounded solutions and periodic solutions for second order differential equations with asymmetric nonlinearity,, Proc. Amer. Math. Soc., 135 (2007), 2769.  doi: 10.1090/S0002-9939-07-08928-9.  Google Scholar

[10]

N. J. Lloyd, "Degree Theory,", Cambridge University Press, (1978).   Google Scholar

[11]

S. W. Ma and J. H. Wu, A small twist theorem and boundedness of solutions for semilinear Duffing equations at resonance,, Nonlinear Anal., 67 (2007), 200.  doi: 10.1016/j.na.2006.04.023.  Google Scholar

[12]

L. X. Wang and S. W. Ma, Boundedness and unboundedness of solutions for asymmetric oscillators at resonance,, Preprint., ().   Google Scholar

[13]

Z. H. Wang, Coexistence of unbounded solutions and periodic solutions of Liénard equations with asymmetric nonlinearities at resonance,, Sci. China Ser. A, 50 (2007), 1205.  doi: 10.1007/s11425-007-0070-z.  Google Scholar

[14]

Z. H. Wang, Irrational rotation numbers and unboundedness of solutions of the second order differential equations with asymmetric nonlinearities,, Proc. Amer. Math. Soc., 131 (2003), 523.  doi: 10.1090/S0002-9939-02-06601-7.  Google Scholar

show all references

References:
[1]

J. M. Alonso and R. Ortega, Unbounded solutions of semilinear equations at resonance,, Nonlinearity, 9 (1996), 1099.  doi: 10.1088/0951-7715/9/5/003.  Google Scholar

[2]

J. M. Alonso and R. Ortega, Roots of unity and unbounded motions of an asymmetric oscillator,, J. Differential Equations, 143 (1998), 201.  doi: 10.1006/jdeq.1997.3367.  Google Scholar

[3]

W. Dambrosio, A note on the existence of unbounded solutions to a perturbed asymmetric oscillator,, Nonlinear Anal., 50 (2002), 333.  doi: 10.1016/S0362-546X(01)00765-9.  Google Scholar

[4]

E. N. Dancer, Boundary-value problems for weakly nonlinear ordinary differential equations,, Bull. Austral. Math. Soc., 15 (1976), 321.  doi: 10.1017/S0004972700022747.  Google Scholar

[5]

E. N. Dancer, On the Dirichlet problem for weakly nonlinear elliptic partial differential equations,, Proc. Roy. Soc. Edinburgh Sect.A, 76 (1976), 283.   Google Scholar

[6]

S. Fučik, "Sovability of Nonlinear Equations and Boundary Value Problems,", D. Reidel Publishing Co., (1980).   Google Scholar

[7]

M. Kunze, T. Küpper and B. Liu, Boundedness and unboundedness solutions of reversible oscillators at resonance,, Nonlinearity, 14 (2001), 1105.  doi: 10.1088/0951-7715/14/5/311.  Google Scholar

[8]

B. Liu, Boundedness in asymmetric oscillations,, J. Math. Anal. Appl., 231 (1999), 355.  doi: 10.1006/jmaa.1998.6219.  Google Scholar

[9]

X. Li and Z. H. Zhang, Unbounded solutions and periodic solutions for second order differential equations with asymmetric nonlinearity,, Proc. Amer. Math. Soc., 135 (2007), 2769.  doi: 10.1090/S0002-9939-07-08928-9.  Google Scholar

[10]

N. J. Lloyd, "Degree Theory,", Cambridge University Press, (1978).   Google Scholar

[11]

S. W. Ma and J. H. Wu, A small twist theorem and boundedness of solutions for semilinear Duffing equations at resonance,, Nonlinear Anal., 67 (2007), 200.  doi: 10.1016/j.na.2006.04.023.  Google Scholar

[12]

L. X. Wang and S. W. Ma, Boundedness and unboundedness of solutions for asymmetric oscillators at resonance,, Preprint., ().   Google Scholar

[13]

Z. H. Wang, Coexistence of unbounded solutions and periodic solutions of Liénard equations with asymmetric nonlinearities at resonance,, Sci. China Ser. A, 50 (2007), 1205.  doi: 10.1007/s11425-007-0070-z.  Google Scholar

[14]

Z. H. Wang, Irrational rotation numbers and unboundedness of solutions of the second order differential equations with asymmetric nonlinearities,, Proc. Amer. Math. Soc., 131 (2003), 523.  doi: 10.1090/S0002-9939-02-06601-7.  Google Scholar

[1]

Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020371

[2]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[3]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[4]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[5]

Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020172

[6]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[7]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[8]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

[9]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[10]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[11]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[12]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[13]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[14]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[15]

Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020162

[16]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020405

[17]

Yan'e Wang, Nana Tian, Hua Nie. Positive solution branches of two-species competition model in open advective environments. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021006

[18]

Bingyan Liu, Xiongbing Ye, Xianzhou Dong, Lei Ni. Branching improved Deep Q Networks for solving pursuit-evasion strategy solution of spacecraft. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021016

[19]

Elena Nozdrinova, Olga Pochinka. Solution of the 33rd Palis-Pugh problem for gradient-like diffeomorphisms of a two-dimensional sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1101-1131. doi: 10.3934/dcds.2020311

[20]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (26)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]