• Previous Article
    Global Hopf bifurcation analysis of a six-dimensional FitzHugh-Nagumo neural network with delay by a synchronized scheme
  • DCDS-B Home
  • This Issue
  • Next Article
    Lyapunov stability for conservative systems with lower degrees of freedom
September  2011, 16(2): 445-456. doi: 10.3934/dcdsb.2011.16.445

Bursting and two-parameter bifurcation in the Chay neuronal model

1. 

College of Science, North China University of Technology, Beijing 100144, China

2. 

School of Mathematics and System Sciences, Beihang University, Beijing 100191, China

3. 

Department of Mathematics, South China University of Technology, Guangzhou 510641, China

4. 

School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China

Received  January 2010 Revised  February 2011 Published  June 2011

In this paper, we study and classify the firing patterns in the Chay neuronal model by the fast/slow decomposition and the two-parameter bifurcations analysis. We show that the Chay neuronal model can display complex bursting oscillations, including the "fold/fold" bursting, the "Hopf/Hopf" bursting and the "Hopf/homoclinic" bursting. Furthermore, dynamical properties of different firing activities of a neuron are closely related to the bifurcation structures of the fast subsystem. Our results indicate that the codimension-2 bifurcation points and the related codimension-1 bifurcation curves of the fast-subsystem can provide crucial information to predict the existence and types of bursting with changes of parameters.
Citation: Lixia Duan, Zhuoqin Yang, Shenquan Liu, Dunwei Gong. Bursting and two-parameter bifurcation in the Chay neuronal model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 445-456. doi: 10.3934/dcdsb.2011.16.445
References:
[1]

A. Kepecs, X. Wang and J. Lisman, Bursting neurons singale input slope,, J. Neurosci., 22 (2002), 9053.   Google Scholar

[2]

A. Kepecs and J. Lisman, Information encoding and computation with spikes and bursters,, Network: Comput. Neural. Syst., 14 (2003), 103.   Google Scholar

[3]

E. M. Izhikevich, et.al., \url{http://www.scholarpedia.org/article/Bursting}., ().   Google Scholar

[4]

J. Rinzel, Bursting oscillations in an excitable membrane model,, in, 1151 (1985), 304.   Google Scholar

[5]

R. Bertram, M. Butte, T. Kiemel and A. Sherman, Topological and phenomenological classification of bursting oscillations,, Bull. Math. Biol., 57 (1995), 413.   Google Scholar

[6]

M. Rush and J. Rinzel, Analysis of Bursting in a thalamic neuron model,, Biol. Cybern., 71 (1994), 281.  doi: 10.1007/BF00239616.  Google Scholar

[7]

E. M. Izhikevich, Neural excitability, spiking and bursting,, Int. J. of Bifurcation and Chaos, 10 (2000), 1171.  doi: 10.1142/S0218127400000840.  Google Scholar

[8]

X. J. Wang, Genesis of bursting oscillations in the Hindmarsh-Rose model and homoclinicity to a chaotic saddle,, Physica D, 62 (1993), 263.  doi: 10.1016/0167-2789(93)90286-A.  Google Scholar

[9]

P. R. Shorten and D. J. Wall, A Hodgkin-Huxley model exhibiting bursting oscillations,, Bull. Math. Biol., 62 (2000), 695.  doi: 10.1006/bulm.2000.0172.  Google Scholar

[10]

M. Perc and M. Marhl, Different types of bursting calcium oscillations in non-excitable cells,, Chaos, 18 (2003), 759.  doi: 10.1016/S0960-0779(03)00027-4.  Google Scholar

[11]

L. Brusch, W. Lorenz, M. Or-Guil, M. Bär and U. Kummer, Fold-Hopf bursting in a model for calcium signal transduction,, Z. Phys. Chem., 216 (2002), 487.  doi: 10.1524/zpch.2002.216.4.487.  Google Scholar

[12]

V. N. Belykh, I. V. Belykh, M. Colding-Jørgensen and E. Mosekilde, Homoclinic bifurcations leading to the emergence of bursting oscillations in cell models,, Eur. Phys. J. E, 3 (2000), 205.  doi: 10.1007/s101890070012.  Google Scholar

[13]

Y. S. Fan and T. R. Chay, Generation of periodic and chaotic bursting in an excitable cell model,, Biol. Cybern., 71 (1994), 417.  doi: 10.1007/BF00198918.  Google Scholar

[14]

H. G. Gu, M. H. Yang, L. Li, Z. Q. Liu and W. Ren, Dynamics of autonomous stochastic resonance in neural period adding bifurcation scenarios,, Phys. Lett. A, 319 (2003), 89.  doi: 10.1016/j.physleta.2003.09.077.  Google Scholar

[15]

Z. Q. Yang, Q. S. Lu, H. G. Gu and W. Ren, Gwn-induced bursting, spiking, and random subthreshold impulsing oscillation before Hopf bifurcations in the Chay model,, Int. J. Bifurcation Chaos, 14 (2004), 4143.  doi: 10.1142/S0218127404011892.  Google Scholar

[16]

Z. Q. Yang and Q. S. Lu, Different types of bursting in Chay neuronal model,, Sci. China Ser. G-Phys Mech. Astron., 6 (2008), 687.   Google Scholar

[17]

J. Guckenheimer and J. H. Tien, Bifurcation in the fast dynamics of neurons: implication for bursting,, in, (2005), 89.  doi: 10.1142/9789812703231_0004.  Google Scholar

[18]

X. Q. Wu and L. C. Wang, Hopf bifurcation of a class of two coupled relaxation oscillators of the van der pol type with delay,, Discrete and Continuous Dynamical Systems Series B, 13 (2010), 503.   Google Scholar

[19]

D. Liu, S. G. Ruan and D. M. Zhu, Bifurcation analysis in models of tumor and immune system interactions,, Discrete and Continuous Dynamical Systems Series B, 12 (2009), 151.  doi: 10.3934/dcdsb.2009.12.151.  Google Scholar

[20]

L. X. Duan, Q. S. Lu and Q. Y. Wang, Two-parameter bifurcation analysis of firing activities in the Chay neuronal model,, Neurocomp, 72 (2008), 341.  doi: 10.1016/j.neucom.2008.01.019.  Google Scholar

[21]

L. X. Duan, Q. S. Lu and D. Z. Cheng, Bursting of Morris-Lecar neuronal model with current-feedback control,, Sci. China Ser. E-Tech. Sci., 52 (2009), 771.   Google Scholar

[22]

T. R. Chay, Chaos in the three-variable model of an excitable cell,, Physica D, 16 (1985), 233.  doi: 10.1016/0167-2789(85)90060-0.  Google Scholar

[23]

Y. A. Kuznetsov, "Elements of Applied Bifurcation Theory,", 3rd edition, (2004).   Google Scholar

[24]

G. B. Ermentrout, "Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students," 1st, edition, ().  doi: 10.1137/1.9780898718195.  Google Scholar

[25]

, Y. A. Kuznetsov and V. V. Levitin,, ftp.cwi.nl/pub/CONTENT., ().   Google Scholar

show all references

References:
[1]

A. Kepecs, X. Wang and J. Lisman, Bursting neurons singale input slope,, J. Neurosci., 22 (2002), 9053.   Google Scholar

[2]

A. Kepecs and J. Lisman, Information encoding and computation with spikes and bursters,, Network: Comput. Neural. Syst., 14 (2003), 103.   Google Scholar

[3]

E. M. Izhikevich, et.al., \url{http://www.scholarpedia.org/article/Bursting}., ().   Google Scholar

[4]

J. Rinzel, Bursting oscillations in an excitable membrane model,, in, 1151 (1985), 304.   Google Scholar

[5]

R. Bertram, M. Butte, T. Kiemel and A. Sherman, Topological and phenomenological classification of bursting oscillations,, Bull. Math. Biol., 57 (1995), 413.   Google Scholar

[6]

M. Rush and J. Rinzel, Analysis of Bursting in a thalamic neuron model,, Biol. Cybern., 71 (1994), 281.  doi: 10.1007/BF00239616.  Google Scholar

[7]

E. M. Izhikevich, Neural excitability, spiking and bursting,, Int. J. of Bifurcation and Chaos, 10 (2000), 1171.  doi: 10.1142/S0218127400000840.  Google Scholar

[8]

X. J. Wang, Genesis of bursting oscillations in the Hindmarsh-Rose model and homoclinicity to a chaotic saddle,, Physica D, 62 (1993), 263.  doi: 10.1016/0167-2789(93)90286-A.  Google Scholar

[9]

P. R. Shorten and D. J. Wall, A Hodgkin-Huxley model exhibiting bursting oscillations,, Bull. Math. Biol., 62 (2000), 695.  doi: 10.1006/bulm.2000.0172.  Google Scholar

[10]

M. Perc and M. Marhl, Different types of bursting calcium oscillations in non-excitable cells,, Chaos, 18 (2003), 759.  doi: 10.1016/S0960-0779(03)00027-4.  Google Scholar

[11]

L. Brusch, W. Lorenz, M. Or-Guil, M. Bär and U. Kummer, Fold-Hopf bursting in a model for calcium signal transduction,, Z. Phys. Chem., 216 (2002), 487.  doi: 10.1524/zpch.2002.216.4.487.  Google Scholar

[12]

V. N. Belykh, I. V. Belykh, M. Colding-Jørgensen and E. Mosekilde, Homoclinic bifurcations leading to the emergence of bursting oscillations in cell models,, Eur. Phys. J. E, 3 (2000), 205.  doi: 10.1007/s101890070012.  Google Scholar

[13]

Y. S. Fan and T. R. Chay, Generation of periodic and chaotic bursting in an excitable cell model,, Biol. Cybern., 71 (1994), 417.  doi: 10.1007/BF00198918.  Google Scholar

[14]

H. G. Gu, M. H. Yang, L. Li, Z. Q. Liu and W. Ren, Dynamics of autonomous stochastic resonance in neural period adding bifurcation scenarios,, Phys. Lett. A, 319 (2003), 89.  doi: 10.1016/j.physleta.2003.09.077.  Google Scholar

[15]

Z. Q. Yang, Q. S. Lu, H. G. Gu and W. Ren, Gwn-induced bursting, spiking, and random subthreshold impulsing oscillation before Hopf bifurcations in the Chay model,, Int. J. Bifurcation Chaos, 14 (2004), 4143.  doi: 10.1142/S0218127404011892.  Google Scholar

[16]

Z. Q. Yang and Q. S. Lu, Different types of bursting in Chay neuronal model,, Sci. China Ser. G-Phys Mech. Astron., 6 (2008), 687.   Google Scholar

[17]

J. Guckenheimer and J. H. Tien, Bifurcation in the fast dynamics of neurons: implication for bursting,, in, (2005), 89.  doi: 10.1142/9789812703231_0004.  Google Scholar

[18]

X. Q. Wu and L. C. Wang, Hopf bifurcation of a class of two coupled relaxation oscillators of the van der pol type with delay,, Discrete and Continuous Dynamical Systems Series B, 13 (2010), 503.   Google Scholar

[19]

D. Liu, S. G. Ruan and D. M. Zhu, Bifurcation analysis in models of tumor and immune system interactions,, Discrete and Continuous Dynamical Systems Series B, 12 (2009), 151.  doi: 10.3934/dcdsb.2009.12.151.  Google Scholar

[20]

L. X. Duan, Q. S. Lu and Q. Y. Wang, Two-parameter bifurcation analysis of firing activities in the Chay neuronal model,, Neurocomp, 72 (2008), 341.  doi: 10.1016/j.neucom.2008.01.019.  Google Scholar

[21]

L. X. Duan, Q. S. Lu and D. Z. Cheng, Bursting of Morris-Lecar neuronal model with current-feedback control,, Sci. China Ser. E-Tech. Sci., 52 (2009), 771.   Google Scholar

[22]

T. R. Chay, Chaos in the three-variable model of an excitable cell,, Physica D, 16 (1985), 233.  doi: 10.1016/0167-2789(85)90060-0.  Google Scholar

[23]

Y. A. Kuznetsov, "Elements of Applied Bifurcation Theory,", 3rd edition, (2004).   Google Scholar

[24]

G. B. Ermentrout, "Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students," 1st, edition, ().  doi: 10.1137/1.9780898718195.  Google Scholar

[25]

, Y. A. Kuznetsov and V. V. Levitin,, ftp.cwi.nl/pub/CONTENT., ().   Google Scholar

[1]

Alexandre Caboussat, Allison Leonard. Numerical solution and fast-slow decomposition of a population of weakly coupled systems. Conference Publications, 2009, 2009 (Special) : 123-132. doi: 10.3934/proc.2009.2009.123

[2]

Zhuoqin Yang, Tingting Guan. Bifurcation analysis of complex bursting induced by two different time-scale slow variables. Conference Publications, 2011, 2011 (Special) : 1440-1447. doi: 10.3934/proc.2011.2011.1440

[3]

Yong Xu, Bin Pei, Rong Guo. Stochastic averaging for slow-fast dynamical systems with fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2257-2267. doi: 10.3934/dcdsb.2015.20.2257

[4]

Chunhua Jin. Boundedness and global solvability to a chemotaxis-haptotaxis model with slow and fast diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1675-1688. doi: 10.3934/dcdsb.2018069

[5]

Feng Zhang, Wei Zhang, Pan Meng, Jianzhong Su. Bifurcation analysis of bursting solutions of two Hindmarsh-Rose neurons with joint electrical and synaptic coupling. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 637-651. doi: 10.3934/dcdsb.2011.16.637

[6]

Lixia Duan, Dehong Zhai, Qishao Lu. Bifurcation and bursting in Morris-Lecar model for class I and class II excitability. Conference Publications, 2011, 2011 (Special) : 391-399. doi: 10.3934/proc.2011.2011.391

[7]

C. Connell Mccluskey. Lyapunov functions for tuberculosis models with fast and slow progression. Mathematical Biosciences & Engineering, 2006, 3 (4) : 603-614. doi: 10.3934/mbe.2006.3.603

[8]

Feng Zhang, Alice Lubbe, Qishao Lu, Jianzhong Su. On bursting solutions near chaotic regimes in a neuron model. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1363-1383. doi: 10.3934/dcdss.2014.7.1363

[9]

Oanh Chau, R. Oujja, Mohamed Rochdi. A mathematical analysis of a dynamical frictional contact model in thermoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 61-70. doi: 10.3934/dcdss.2008.1.61

[10]

Younghae Do, Juan M. Lopez. Slow passage through multiple bifurcation points. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 95-107. doi: 10.3934/dcdsb.2013.18.95

[11]

Jie Xu, Yu Miao, Jicheng Liu. Strong averaging principle for slow-fast SPDEs with Poisson random measures. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2233-2256. doi: 10.3934/dcdsb.2015.20.2233

[12]

Alexandre Vidal. Periodic orbits of tritrophic slow-fast system and double homoclinic bifurcations. Conference Publications, 2007, 2007 (Special) : 1021-1030. doi: 10.3934/proc.2007.2007.1021

[13]

Renato Huzak. Cyclicity of the origin in slow-fast codimension 3 saddle and elliptic bifurcations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 171-215. doi: 10.3934/dcds.2016.36.171

[14]

Luca Dieci, Cinzia Elia. Smooth to discontinuous systems: A geometric and numerical method for slow-fast dynamics. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2935-2950. doi: 10.3934/dcdsb.2018112

[15]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[16]

Runxia Wang, Haihong Liu, Fang Yan, Xiaohui Wang. Hopf-pitchfork bifurcation analysis in a coupled FHN neurons model with delay. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 523-542. doi: 10.3934/dcdss.2017026

[17]

Jun Zhou. Bifurcation analysis of a diffusive plant-wrack model with tide effect on the wrack. Mathematical Biosciences & Engineering, 2016, 13 (4) : 857-885. doi: 10.3934/mbe.2016021

[18]

Hui Cao, Yicang Zhou, Zhien Ma. Bifurcation analysis of a discrete SIS model with bilinear incidence depending on new infection. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1399-1417. doi: 10.3934/mbe.2013.10.1399

[19]

Liming Cai, Jicai Huang, Xinyu Song, Yuyue Zhang. Bifurcation analysis of a mosquito population model for proportional releasing sterile mosquitoes. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6279-6295. doi: 10.3934/dcdsb.2019139

[20]

Juping Ji, Lin Wang. Bifurcation and stability analysis for a nutrient-phytoplankton model with toxic effects. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020135

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]