-
Previous Article
Global Hopf bifurcation analysis of a six-dimensional FitzHugh-Nagumo neural network with delay by a synchronized scheme
- DCDS-B Home
- This Issue
-
Next Article
Lyapunov stability for conservative systems with lower degrees of freedom
Bursting and two-parameter bifurcation in the Chay neuronal model
1. | College of Science, North China University of Technology, Beijing 100144, China |
2. | School of Mathematics and System Sciences, Beihang University, Beijing 100191, China |
3. | Department of Mathematics, South China University of Technology, Guangzhou 510641, China |
4. | School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China |
References:
[1] |
A. Kepecs, X. Wang and J. Lisman, Bursting neurons singale input slope, J. Neurosci., 22 (2002), 9053-9062. |
[2] |
A. Kepecs and J. Lisman, Information encoding and computation with spikes and bursters, Network: Comput. Neural. Syst., 14 (2003), 103-9118. |
[3] |
E. M. Izhikevich, et.al., \url{http://www.scholarpedia.org/article/Bursting}., ().
|
[4] |
J. Rinzel, Bursting oscillations in an excitable membrane model, in "Ordinary and Partial Differential Equations, Lecture Notes in Mathematics" (eds. B.D. Sleeman, R.J. Jarvis), Springer, Berlin, 1151 (1985), 304-316. |
[5] |
R. Bertram, M. Butte, T. Kiemel and A. Sherman, Topological and phenomenological classification of bursting oscillations, Bull. Math. Biol., 57 (1995), 413-439. |
[6] |
M. Rush and J. Rinzel, Analysis of Bursting in a thalamic neuron model, Biol. Cybern., 71 (1994), 281-291.
doi: 10.1007/BF00239616. |
[7] |
E. M. Izhikevich, Neural excitability, spiking and bursting, Int. J. of Bifurcation and Chaos, 10 (2000), 1171-1266.
doi: 10.1142/S0218127400000840. |
[8] |
X. J. Wang, Genesis of bursting oscillations in the Hindmarsh-Rose model and homoclinicity to a chaotic saddle, Physica D, 62 (1993), 263-274.
doi: 10.1016/0167-2789(93)90286-A. |
[9] |
P. R. Shorten and D. J. Wall, A Hodgkin-Huxley model exhibiting bursting oscillations, Bull. Math. Biol., 62 (2000), 695-715.
doi: 10.1006/bulm.2000.0172. |
[10] |
M. Perc and M. Marhl, Different types of bursting calcium oscillations in non-excitable cells, Chaos, Solitons and Fractals, 18 (2003), 759-773.
doi: 10.1016/S0960-0779(03)00027-4. |
[11] |
L. Brusch, W. Lorenz, M. Or-Guil, M. Bär and U. Kummer, Fold-Hopf bursting in a model for calcium signal transduction, Z. Phys. Chem., 216 (2002), 487-97.
doi: 10.1524/zpch.2002.216.4.487. |
[12] |
V. N. Belykh, I. V. Belykh, M. Colding-Jørgensen and E. Mosekilde, Homoclinic bifurcations leading to the emergence of bursting oscillations in cell models, Eur. Phys. J. E, 3 (2000), 205-219.
doi: 10.1007/s101890070012. |
[13] |
Y. S. Fan and T. R. Chay, Generation of periodic and chaotic bursting in an excitable cell model, Biol. Cybern., 71 (1994), 417-431.
doi: 10.1007/BF00198918. |
[14] |
H. G. Gu, M. H. Yang, L. Li, Z. Q. Liu and W. Ren, Dynamics of autonomous stochastic resonance in neural period adding bifurcation scenarios, Phys. Lett. A, 319 (2003), 89-96.
doi: 10.1016/j.physleta.2003.09.077. |
[15] |
Z. Q. Yang, Q. S. Lu, H. G. Gu and W. Ren, Gwn-induced bursting, spiking, and random subthreshold impulsing oscillation before Hopf bifurcations in the Chay model, Int. J. Bifurcation Chaos, 14 (2004), 4143-4159.
doi: 10.1142/S0218127404011892. |
[16] |
Z. Q. Yang and Q. S. Lu, Different types of bursting in Chay neuronal model, Sci. China Ser. G-Phys Mech. Astron., 6 (2008), 687-698. |
[17] |
J. Guckenheimer and J. H. Tien, Bifurcation in the fast dynamics of neurons: implication for bursting, in "The Genesis of Rhythm in the Nervous System. Bursting" (eds. S. Coombes and P. C. Bressloff), World Scientific Publish, (2005), 89-122.
doi: 10.1142/9789812703231_0004. |
[18] |
X. Q. Wu and L. C. Wang, Hopf bifurcation of a class of two coupled relaxation oscillators of the van der pol type with delay, Discrete and Continuous Dynamical Systems Series B, 13 (2010), 503-516. |
[19] |
D. Liu, S. G. Ruan and D. M. Zhu, Bifurcation analysis in models of tumor and immune system interactions, Discrete and Continuous Dynamical Systems Series B, 12 (2009), 151-168.
doi: 10.3934/dcdsb.2009.12.151. |
[20] |
L. X. Duan, Q. S. Lu and Q. Y. Wang, Two-parameter bifurcation analysis of firing activities in the Chay neuronal model, Neurocomp, 72 (2008), 341-351.
doi: 10.1016/j.neucom.2008.01.019. |
[21] |
L. X. Duan, Q. S. Lu and D. Z. Cheng, Bursting of Morris-Lecar neuronal model with current-feedback control, Sci. China Ser. E-Tech. Sci., 52 (2009), 771-781. |
[22] |
T. R. Chay, Chaos in the three-variable model of an excitable cell, Physica D, 16 (1985), 233-242.
doi: 10.1016/0167-2789(85)90060-0. |
[23] |
Y. A. Kuznetsov, "Elements of Applied Bifurcation Theory," 3rd edition, Springer-Verlag, New York, 2004. |
[24] |
G. B. Ermentrout, "Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students," 1st, edition, ().
doi: 10.1137/1.9780898718195. |
[25] |
, Y. A. Kuznetsov and V. V. Levitin,, ftp.cwi.nl/pub/CONTENT., ().
|
show all references
References:
[1] |
A. Kepecs, X. Wang and J. Lisman, Bursting neurons singale input slope, J. Neurosci., 22 (2002), 9053-9062. |
[2] |
A. Kepecs and J. Lisman, Information encoding and computation with spikes and bursters, Network: Comput. Neural. Syst., 14 (2003), 103-9118. |
[3] |
E. M. Izhikevich, et.al., \url{http://www.scholarpedia.org/article/Bursting}., ().
|
[4] |
J. Rinzel, Bursting oscillations in an excitable membrane model, in "Ordinary and Partial Differential Equations, Lecture Notes in Mathematics" (eds. B.D. Sleeman, R.J. Jarvis), Springer, Berlin, 1151 (1985), 304-316. |
[5] |
R. Bertram, M. Butte, T. Kiemel and A. Sherman, Topological and phenomenological classification of bursting oscillations, Bull. Math. Biol., 57 (1995), 413-439. |
[6] |
M. Rush and J. Rinzel, Analysis of Bursting in a thalamic neuron model, Biol. Cybern., 71 (1994), 281-291.
doi: 10.1007/BF00239616. |
[7] |
E. M. Izhikevich, Neural excitability, spiking and bursting, Int. J. of Bifurcation and Chaos, 10 (2000), 1171-1266.
doi: 10.1142/S0218127400000840. |
[8] |
X. J. Wang, Genesis of bursting oscillations in the Hindmarsh-Rose model and homoclinicity to a chaotic saddle, Physica D, 62 (1993), 263-274.
doi: 10.1016/0167-2789(93)90286-A. |
[9] |
P. R. Shorten and D. J. Wall, A Hodgkin-Huxley model exhibiting bursting oscillations, Bull. Math. Biol., 62 (2000), 695-715.
doi: 10.1006/bulm.2000.0172. |
[10] |
M. Perc and M. Marhl, Different types of bursting calcium oscillations in non-excitable cells, Chaos, Solitons and Fractals, 18 (2003), 759-773.
doi: 10.1016/S0960-0779(03)00027-4. |
[11] |
L. Brusch, W. Lorenz, M. Or-Guil, M. Bär and U. Kummer, Fold-Hopf bursting in a model for calcium signal transduction, Z. Phys. Chem., 216 (2002), 487-97.
doi: 10.1524/zpch.2002.216.4.487. |
[12] |
V. N. Belykh, I. V. Belykh, M. Colding-Jørgensen and E. Mosekilde, Homoclinic bifurcations leading to the emergence of bursting oscillations in cell models, Eur. Phys. J. E, 3 (2000), 205-219.
doi: 10.1007/s101890070012. |
[13] |
Y. S. Fan and T. R. Chay, Generation of periodic and chaotic bursting in an excitable cell model, Biol. Cybern., 71 (1994), 417-431.
doi: 10.1007/BF00198918. |
[14] |
H. G. Gu, M. H. Yang, L. Li, Z. Q. Liu and W. Ren, Dynamics of autonomous stochastic resonance in neural period adding bifurcation scenarios, Phys. Lett. A, 319 (2003), 89-96.
doi: 10.1016/j.physleta.2003.09.077. |
[15] |
Z. Q. Yang, Q. S. Lu, H. G. Gu and W. Ren, Gwn-induced bursting, spiking, and random subthreshold impulsing oscillation before Hopf bifurcations in the Chay model, Int. J. Bifurcation Chaos, 14 (2004), 4143-4159.
doi: 10.1142/S0218127404011892. |
[16] |
Z. Q. Yang and Q. S. Lu, Different types of bursting in Chay neuronal model, Sci. China Ser. G-Phys Mech. Astron., 6 (2008), 687-698. |
[17] |
J. Guckenheimer and J. H. Tien, Bifurcation in the fast dynamics of neurons: implication for bursting, in "The Genesis of Rhythm in the Nervous System. Bursting" (eds. S. Coombes and P. C. Bressloff), World Scientific Publish, (2005), 89-122.
doi: 10.1142/9789812703231_0004. |
[18] |
X. Q. Wu and L. C. Wang, Hopf bifurcation of a class of two coupled relaxation oscillators of the van der pol type with delay, Discrete and Continuous Dynamical Systems Series B, 13 (2010), 503-516. |
[19] |
D. Liu, S. G. Ruan and D. M. Zhu, Bifurcation analysis in models of tumor and immune system interactions, Discrete and Continuous Dynamical Systems Series B, 12 (2009), 151-168.
doi: 10.3934/dcdsb.2009.12.151. |
[20] |
L. X. Duan, Q. S. Lu and Q. Y. Wang, Two-parameter bifurcation analysis of firing activities in the Chay neuronal model, Neurocomp, 72 (2008), 341-351.
doi: 10.1016/j.neucom.2008.01.019. |
[21] |
L. X. Duan, Q. S. Lu and D. Z. Cheng, Bursting of Morris-Lecar neuronal model with current-feedback control, Sci. China Ser. E-Tech. Sci., 52 (2009), 771-781. |
[22] |
T. R. Chay, Chaos in the three-variable model of an excitable cell, Physica D, 16 (1985), 233-242.
doi: 10.1016/0167-2789(85)90060-0. |
[23] |
Y. A. Kuznetsov, "Elements of Applied Bifurcation Theory," 3rd edition, Springer-Verlag, New York, 2004. |
[24] |
G. B. Ermentrout, "Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students," 1st, edition, ().
doi: 10.1137/1.9780898718195. |
[25] |
, Y. A. Kuznetsov and V. V. Levitin,, ftp.cwi.nl/pub/CONTENT., ().
|
[1] |
Alexandre Caboussat, Allison Leonard. Numerical solution and fast-slow decomposition of a population of weakly coupled systems. Conference Publications, 2009, 2009 (Special) : 123-132. doi: 10.3934/proc.2009.2009.123 |
[2] |
Zhuoqin Yang, Tingting Guan. Bifurcation analysis of complex bursting induced by two different time-scale slow variables. Conference Publications, 2011, 2011 (Special) : 1440-1447. doi: 10.3934/proc.2011.2011.1440 |
[3] |
Yong Xu, Bin Pei, Rong Guo. Stochastic averaging for slow-fast dynamical systems with fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2257-2267. doi: 10.3934/dcdsb.2015.20.2257 |
[4] |
Chunhua Jin. Boundedness and global solvability to a chemotaxis-haptotaxis model with slow and fast diffusion. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1675-1688. doi: 10.3934/dcdsb.2018069 |
[5] |
Feng Zhang, Wei Zhang, Pan Meng, Jianzhong Su. Bifurcation analysis of bursting solutions of two Hindmarsh-Rose neurons with joint electrical and synaptic coupling. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 637-651. doi: 10.3934/dcdsb.2011.16.637 |
[6] |
Lixia Duan, Dehong Zhai, Qishao Lu. Bifurcation and bursting in Morris-Lecar model for class I and class II excitability. Conference Publications, 2011, 2011 (Special) : 391-399. doi: 10.3934/proc.2011.2011.391 |
[7] |
Langhao Zhou, Liangwei Wang, Chunhua Jin. Global solvability to a singular chemotaxis-consumption model with fast and slow diffusion and logistic source. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2065-2075. doi: 10.3934/dcdsb.2021122 |
[8] |
C. Connell Mccluskey. Lyapunov functions for tuberculosis models with fast and slow progression. Mathematical Biosciences & Engineering, 2006, 3 (4) : 603-614. doi: 10.3934/mbe.2006.3.603 |
[9] |
Liang Zhao, Jianhe Shen. Canards and homoclinic orbits in a slow-fast modified May-Holling-Tanner predator-prey model with weak multiple Allee effect. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022018 |
[10] |
Miaoran Yao, Yongxin Zhang, Wendi Wang. Bifurcation analysis for an in-host Mycobacterium tuberculosis model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2299-2322. doi: 10.3934/dcdsb.2020324 |
[11] |
Bing Zeng, Pei Yu. A hierarchical parametric analysis on Hopf bifurcation of an epidemic model. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022069 |
[12] |
Feng Zhang, Alice Lubbe, Qishao Lu, Jianzhong Su. On bursting solutions near chaotic regimes in a neuron model. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1363-1383. doi: 10.3934/dcdss.2014.7.1363 |
[13] |
Younghae Do, Juan M. Lopez. Slow passage through multiple bifurcation points. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 95-107. doi: 10.3934/dcdsb.2013.18.95 |
[14] |
Oanh Chau, R. Oujja, Mohamed Rochdi. A mathematical analysis of a dynamical frictional contact model in thermoviscoelasticity. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 61-70. doi: 10.3934/dcdss.2008.1.61 |
[15] |
Jie Xu, Yu Miao, Jicheng Liu. Strong averaging principle for slow-fast SPDEs with Poisson random measures. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2233-2256. doi: 10.3934/dcdsb.2015.20.2233 |
[16] |
Seung-Yeal Ha, Dohyun Kim, Jinyeong Park. Fast and slow velocity alignments in a Cucker-Smale ensemble with adaptive couplings. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4621-4654. doi: 10.3934/cpaa.2020209 |
[17] |
Alexandre Vidal. Periodic orbits of tritrophic slow-fast system and double homoclinic bifurcations. Conference Publications, 2007, 2007 (Special) : 1021-1030. doi: 10.3934/proc.2007.2007.1021 |
[18] |
Renato Huzak. Cyclicity of the origin in slow-fast codimension 3 saddle and elliptic bifurcations. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 171-215. doi: 10.3934/dcds.2016.36.171 |
[19] |
Luca Dieci, Cinzia Elia. Smooth to discontinuous systems: A geometric and numerical method for slow-fast dynamics. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2935-2950. doi: 10.3934/dcdsb.2018112 |
[20] |
Ryotaro Tsuneki, Shinji Doi, Junko Inoue. Generation of slow phase-locked oscillation and variability of the interspike intervals in globally coupled neuronal oscillators. Mathematical Biosciences & Engineering, 2014, 11 (1) : 125-138. doi: 10.3934/mbe.2014.11.125 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]