• Previous Article
    Global Hopf bifurcation analysis of a six-dimensional FitzHugh-Nagumo neural network with delay by a synchronized scheme
  • DCDS-B Home
  • This Issue
  • Next Article
    Lyapunov stability for conservative systems with lower degrees of freedom
September  2011, 16(2): 445-456. doi: 10.3934/dcdsb.2011.16.445

Bursting and two-parameter bifurcation in the Chay neuronal model

1. 

College of Science, North China University of Technology, Beijing 100144, China

2. 

School of Mathematics and System Sciences, Beihang University, Beijing 100191, China

3. 

Department of Mathematics, South China University of Technology, Guangzhou 510641, China

4. 

School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China

Received  January 2010 Revised  February 2011 Published  June 2011

In this paper, we study and classify the firing patterns in the Chay neuronal model by the fast/slow decomposition and the two-parameter bifurcations analysis. We show that the Chay neuronal model can display complex bursting oscillations, including the "fold/fold" bursting, the "Hopf/Hopf" bursting and the "Hopf/homoclinic" bursting. Furthermore, dynamical properties of different firing activities of a neuron are closely related to the bifurcation structures of the fast subsystem. Our results indicate that the codimension-2 bifurcation points and the related codimension-1 bifurcation curves of the fast-subsystem can provide crucial information to predict the existence and types of bursting with changes of parameters.
Citation: Lixia Duan, Zhuoqin Yang, Shenquan Liu, Dunwei Gong. Bursting and two-parameter bifurcation in the Chay neuronal model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 445-456. doi: 10.3934/dcdsb.2011.16.445
References:
[1]

J. Neurosci., 22 (2002), 9053-9062. Google Scholar

[2]

Network: Comput. Neural. Syst., 14 (2003), 103-9118. Google Scholar

[3]

E. M. Izhikevich, et.al., \url{http://www.scholarpedia.org/article/Bursting}., ().   Google Scholar

[4]

in "Ordinary and Partial Differential Equations, Lecture Notes in Mathematics" (eds. B.D. Sleeman, R.J. Jarvis), Springer, Berlin, 1151 (1985), 304-316.  Google Scholar

[5]

Bull. Math. Biol., 57 (1995), 413-439. Google Scholar

[6]

Biol. Cybern., 71 (1994), 281-291. doi: 10.1007/BF00239616.  Google Scholar

[7]

Int. J. of Bifurcation and Chaos, 10 (2000), 1171-1266. doi: 10.1142/S0218127400000840.  Google Scholar

[8]

Physica D, 62 (1993), 263-274. doi: 10.1016/0167-2789(93)90286-A.  Google Scholar

[9]

Bull. Math. Biol., 62 (2000), 695-715. doi: 10.1006/bulm.2000.0172.  Google Scholar

[10]

Chaos, Solitons and Fractals, 18 (2003), 759-773. doi: 10.1016/S0960-0779(03)00027-4.  Google Scholar

[11]

Z. Phys. Chem., 216 (2002), 487-97. doi: 10.1524/zpch.2002.216.4.487.  Google Scholar

[12]

Eur. Phys. J. E, 3 (2000), 205-219. doi: 10.1007/s101890070012.  Google Scholar

[13]

Biol. Cybern., 71 (1994), 417-431. doi: 10.1007/BF00198918.  Google Scholar

[14]

Phys. Lett. A, 319 (2003), 89-96. doi: 10.1016/j.physleta.2003.09.077.  Google Scholar

[15]

Int. J. Bifurcation Chaos, 14 (2004), 4143-4159. doi: 10.1142/S0218127404011892.  Google Scholar

[16]

Sci. China Ser. G-Phys Mech. Astron., 6 (2008), 687-698. Google Scholar

[17]

in "The Genesis of Rhythm in the Nervous System. Bursting" (eds. S. Coombes and P. C. Bressloff), World Scientific Publish, (2005), 89-122. doi: 10.1142/9789812703231_0004.  Google Scholar

[18]

Discrete and Continuous Dynamical Systems Series B, 13 (2010), 503-516.  Google Scholar

[19]

Discrete and Continuous Dynamical Systems Series B, 12 (2009), 151-168. doi: 10.3934/dcdsb.2009.12.151.  Google Scholar

[20]

Neurocomp, 72 (2008), 341-351. doi: 10.1016/j.neucom.2008.01.019.  Google Scholar

[21]

Sci. China Ser. E-Tech. Sci., 52 (2009), 771-781. Google Scholar

[22]

Physica D, 16 (1985), 233-242. doi: 10.1016/0167-2789(85)90060-0.  Google Scholar

[23]

3rd edition, Springer-Verlag, New York, 2004.  Google Scholar

[24]

G. B. Ermentrout, "Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students," 1st, edition, ().  doi: 10.1137/1.9780898718195.  Google Scholar

[25]

, Y. A. Kuznetsov and V. V. Levitin,, ftp.cwi.nl/pub/CONTENT., ().   Google Scholar

show all references

References:
[1]

J. Neurosci., 22 (2002), 9053-9062. Google Scholar

[2]

Network: Comput. Neural. Syst., 14 (2003), 103-9118. Google Scholar

[3]

E. M. Izhikevich, et.al., \url{http://www.scholarpedia.org/article/Bursting}., ().   Google Scholar

[4]

in "Ordinary and Partial Differential Equations, Lecture Notes in Mathematics" (eds. B.D. Sleeman, R.J. Jarvis), Springer, Berlin, 1151 (1985), 304-316.  Google Scholar

[5]

Bull. Math. Biol., 57 (1995), 413-439. Google Scholar

[6]

Biol. Cybern., 71 (1994), 281-291. doi: 10.1007/BF00239616.  Google Scholar

[7]

Int. J. of Bifurcation and Chaos, 10 (2000), 1171-1266. doi: 10.1142/S0218127400000840.  Google Scholar

[8]

Physica D, 62 (1993), 263-274. doi: 10.1016/0167-2789(93)90286-A.  Google Scholar

[9]

Bull. Math. Biol., 62 (2000), 695-715. doi: 10.1006/bulm.2000.0172.  Google Scholar

[10]

Chaos, Solitons and Fractals, 18 (2003), 759-773. doi: 10.1016/S0960-0779(03)00027-4.  Google Scholar

[11]

Z. Phys. Chem., 216 (2002), 487-97. doi: 10.1524/zpch.2002.216.4.487.  Google Scholar

[12]

Eur. Phys. J. E, 3 (2000), 205-219. doi: 10.1007/s101890070012.  Google Scholar

[13]

Biol. Cybern., 71 (1994), 417-431. doi: 10.1007/BF00198918.  Google Scholar

[14]

Phys. Lett. A, 319 (2003), 89-96. doi: 10.1016/j.physleta.2003.09.077.  Google Scholar

[15]

Int. J. Bifurcation Chaos, 14 (2004), 4143-4159. doi: 10.1142/S0218127404011892.  Google Scholar

[16]

Sci. China Ser. G-Phys Mech. Astron., 6 (2008), 687-698. Google Scholar

[17]

in "The Genesis of Rhythm in the Nervous System. Bursting" (eds. S. Coombes and P. C. Bressloff), World Scientific Publish, (2005), 89-122. doi: 10.1142/9789812703231_0004.  Google Scholar

[18]

Discrete and Continuous Dynamical Systems Series B, 13 (2010), 503-516.  Google Scholar

[19]

Discrete and Continuous Dynamical Systems Series B, 12 (2009), 151-168. doi: 10.3934/dcdsb.2009.12.151.  Google Scholar

[20]

Neurocomp, 72 (2008), 341-351. doi: 10.1016/j.neucom.2008.01.019.  Google Scholar

[21]

Sci. China Ser. E-Tech. Sci., 52 (2009), 771-781. Google Scholar

[22]

Physica D, 16 (1985), 233-242. doi: 10.1016/0167-2789(85)90060-0.  Google Scholar

[23]

3rd edition, Springer-Verlag, New York, 2004.  Google Scholar

[24]

G. B. Ermentrout, "Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students," 1st, edition, ().  doi: 10.1137/1.9780898718195.  Google Scholar

[25]

, Y. A. Kuznetsov and V. V. Levitin,, ftp.cwi.nl/pub/CONTENT., ().   Google Scholar

[1]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[2]

Serena Brianzoni, Giovanni Campisi. Dynamical analysis of a banking duopoly model with capital regulation and asymmetric costs. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021116

[3]

Chunhua Shan. Slow-fast dynamics and nonlinear oscillations in transmission of mosquito-borne diseases. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021097

[4]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[5]

Abraham Sylla. Influence of a slow moving vehicle on traffic: Well-posedness and approximation for a mildly nonlocal model. Networks & Heterogeneous Media, 2021, 16 (2) : 221-256. doi: 10.3934/nhm.2021005

[6]

Wan-Hua He, Chufang Wu, Jia-Wen Gu, Wai-Ki Ching, Chi-Wing Wong. Pricing vulnerable options under a jump-diffusion model with fast mean-reverting stochastic volatility. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021057

[7]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[8]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[9]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3093-3108. doi: 10.3934/dcds.2020399

[10]

M. Phani Sudheer, Ravi S. Nanjundiah, A. S. Vasudeva Murthy. Revisiting the slow manifold of the Lorenz-Krishnamurthy quintet. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1403-1416. doi: 10.3934/dcdsb.2006.6.1403

[11]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[12]

Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021022

[13]

Tian Hou, Yi Wang, Xizhuang Xie. Instability and bifurcation of a cooperative system with periodic coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021026

[14]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[15]

Filippo Giuliani. Transfers of energy through fast diffusion channels in some resonant PDEs on the circle. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021068

[16]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

[17]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

[18]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[19]

Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3683-3708. doi: 10.3934/dcds.2021012

[20]

Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021073

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (71)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]