-
Previous Article
Converting a general 3-D autonomous quadratic system to an extended Lorenz-type system
- DCDS-B Home
- This Issue
-
Next Article
Bursting and two-parameter bifurcation in the Chay neuronal model
Global Hopf bifurcation analysis of a six-dimensional FitzHugh-Nagumo neural network with delay by a synchronized scheme
1. | School of Information Science and Technology, Donghua University, Shanghai 201620, China |
2. | School of Civil and Architecture Engineering, Wuhan University of Technology, Wuhan 430070, China |
3. | Institute for Cognitive Neurodynamics,School of Science, East China University of Science and Technology, Shanghai, 200237, China |
4. | School of Mathematics and Computer Science, Fujian Normal University, Fuzhou 350007, China |
5. | Centre for Applied Dynamics Research, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom |
References:
[1] |
J. J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons,, Proc. Natl. Acad. Sci. USA, 81 (1984), 3088.
doi: 10.1073/pnas.81.10.3088. |
[2] |
Q. S. Lu, Z. Q. Yang, L. X. Duan, H. G. Gu and W. Ren, Dynamics and transitions of firing patterns in deterministic and stochastic neuronal systems,, Chaos, 40 (2009), 377.
doi: 10.1016/j.chaos.2007.08.040. |
[3] |
J. Xu, K. W. Chung and C. L. Chan, An efficient method for studying weak resonant double Hopf bifurcation in nonlinear systems with delayed feedbacks,, SIAM J. Applied Dynamical Systems, 6 (2007), 29.
doi: 10.1137/040614207. |
[4] |
H. Kitajima and H. Kawakami, Bifurcations in synaptically coupled neurons with external impulsive forces,, IEIC Technical Report, 183 (2003), 33. Google Scholar |
[5] |
B. Nikola and T. Dragana, Dynamics of Fitzugh-Nagumo excitable systems with delayed coupling,, Phys. Rev. E, 67 (2003).
doi: 10.1103/PhysRevE.67.066222. |
[6] |
B. Nikola, I. Grozdanovi and N. Vasovi, Type I vs. type II excitable systems with delayed coupling,, Chaos, 4 (2005), 1221.
|
[7] |
Q. Y. Wang, Q. S. Lu and G. R. Chen, Bifurcation and synchronization of synaptically coupled FHN models with time delay,, Chaos, 39 (2009), 918.
doi: 10.1016/j.chaos.2007.01.061. |
[8] |
J. J. Wei and M. Y. Li, Global existence of periodic solutions in a tri-neuron network model with delays,, Physica D, 198 (2004), 106.
doi: 10.1016/j.physd.2004.08.023. |
[9] |
C. J. Sun, M. A. Han and X. M. Pang, Global Hopf bifurcation analysis on a BAM neural network with delays,, Physics Letters A, 360 (2007), 689.
doi: 10.1016/j.physleta.2006.08.078. |
[10] |
X. P. Yan, Hopf bifurcation and stability for a delayed tri-neuron network model,, J. Comp. Appl. Math., 196 (2006), 579.
doi: 10.1016/j.cam.2005.10.012. |
[11] |
B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, "Theory and Application of Hopf Bifurcation,", Cambridge University Press, (1981).
|
[12] |
J. Wu, Symmetric functional differential equations and neural networks with memory,, Trans. Amer. Math. Soc., 350 (1998), 4799.
doi: 10.1090/S0002-9947-98-02083-2. |
[13] |
M. Y. Li and J. Muldowney, On Bendixson's criterion,, J. Differential Equations, 106 (1994), 27.
doi: 10.1006/jdeq.1993.1097. |
[14] |
R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane,, Biophys. J., 1 (1961), 445.
doi: 10.1016/S0006-3495(61)86902-6. |
[15] |
J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon,, Proc. IRE, 50 (1962), 2061. Google Scholar |
[16] |
Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics,", Academic Press, (1993).
|
[17] |
J. Hale, "Theory of Functional Differential Equations,", Springer, (1977).
|
show all references
References:
[1] |
J. J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons,, Proc. Natl. Acad. Sci. USA, 81 (1984), 3088.
doi: 10.1073/pnas.81.10.3088. |
[2] |
Q. S. Lu, Z. Q. Yang, L. X. Duan, H. G. Gu and W. Ren, Dynamics and transitions of firing patterns in deterministic and stochastic neuronal systems,, Chaos, 40 (2009), 377.
doi: 10.1016/j.chaos.2007.08.040. |
[3] |
J. Xu, K. W. Chung and C. L. Chan, An efficient method for studying weak resonant double Hopf bifurcation in nonlinear systems with delayed feedbacks,, SIAM J. Applied Dynamical Systems, 6 (2007), 29.
doi: 10.1137/040614207. |
[4] |
H. Kitajima and H. Kawakami, Bifurcations in synaptically coupled neurons with external impulsive forces,, IEIC Technical Report, 183 (2003), 33. Google Scholar |
[5] |
B. Nikola and T. Dragana, Dynamics of Fitzugh-Nagumo excitable systems with delayed coupling,, Phys. Rev. E, 67 (2003).
doi: 10.1103/PhysRevE.67.066222. |
[6] |
B. Nikola, I. Grozdanovi and N. Vasovi, Type I vs. type II excitable systems with delayed coupling,, Chaos, 4 (2005), 1221.
|
[7] |
Q. Y. Wang, Q. S. Lu and G. R. Chen, Bifurcation and synchronization of synaptically coupled FHN models with time delay,, Chaos, 39 (2009), 918.
doi: 10.1016/j.chaos.2007.01.061. |
[8] |
J. J. Wei and M. Y. Li, Global existence of periodic solutions in a tri-neuron network model with delays,, Physica D, 198 (2004), 106.
doi: 10.1016/j.physd.2004.08.023. |
[9] |
C. J. Sun, M. A. Han and X. M. Pang, Global Hopf bifurcation analysis on a BAM neural network with delays,, Physics Letters A, 360 (2007), 689.
doi: 10.1016/j.physleta.2006.08.078. |
[10] |
X. P. Yan, Hopf bifurcation and stability for a delayed tri-neuron network model,, J. Comp. Appl. Math., 196 (2006), 579.
doi: 10.1016/j.cam.2005.10.012. |
[11] |
B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, "Theory and Application of Hopf Bifurcation,", Cambridge University Press, (1981).
|
[12] |
J. Wu, Symmetric functional differential equations and neural networks with memory,, Trans. Amer. Math. Soc., 350 (1998), 4799.
doi: 10.1090/S0002-9947-98-02083-2. |
[13] |
M. Y. Li and J. Muldowney, On Bendixson's criterion,, J. Differential Equations, 106 (1994), 27.
doi: 10.1006/jdeq.1993.1097. |
[14] |
R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane,, Biophys. J., 1 (1961), 445.
doi: 10.1016/S0006-3495(61)86902-6. |
[15] |
J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon,, Proc. IRE, 50 (1962), 2061. Google Scholar |
[16] |
Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics,", Academic Press, (1993).
|
[17] |
J. Hale, "Theory of Functional Differential Equations,", Springer, (1977).
|
[1] |
Chao Xing, Zhigang Pan, Quan Wang. Stabilities and dynamic transitions of the Fitzhugh-Nagumo system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 775-794. doi: 10.3934/dcdsb.2020134 |
[2] |
Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172 |
[3] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[4] |
Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems & Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077 |
[5] |
Editorial Office. Retraction: Honggang Yu, An efficient face recognition algorithm using the improved convolutional neural network. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 901-901. doi: 10.3934/dcdss.2019060 |
[6] |
Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020342 |
[7] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[8] |
Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021013 |
[9] |
Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020032 |
[10] |
Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147 |
[11] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[12] |
Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156 |
[13] |
Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042 |
[14] |
Guihong Fan, Gail S. K. Wolkowicz. Chaotic dynamics in a simple predator-prey model with discrete delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 191-216. doi: 10.3934/dcdsb.2020263 |
[15] |
Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021011 |
[16] |
Shujing Shi, Jicai Huang, Yang Kuang. Global dynamics in a tumor-immune model with an immune checkpoint inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1149-1170. doi: 10.3934/dcdsb.2020157 |
[17] |
Yanhong Zhang. Global attractors of two layer baroclinic quasi-geostrophic model. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021023 |
[18] |
Tin Phan, Bruce Pell, Amy E. Kendig, Elizabeth T. Borer, Yang Kuang. Rich dynamics of a simple delay host-pathogen model of cell-to-cell infection for plant virus. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 515-539. doi: 10.3934/dcdsb.2020261 |
[19] |
Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021005 |
[20] |
Kengo Nakai, Yoshitaka Saiki. Machine-learning construction of a model for a macroscopic fluid variable using the delay-coordinate of a scalar observable. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1079-1092. doi: 10.3934/dcdss.2020352 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]