\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global Hopf bifurcation analysis of a six-dimensional FitzHugh-Nagumo neural network with delay by a synchronized scheme

Abstract Related Papers Cited by
  • Global Hopf bifurcation analysis is carried out on a six-dimensional FitzHugh-Nagumo (FHN) neural network with a time delay. First, the existence of local Hopf bifurcations of the system is investigated and the explicit formulae which can determine the direction of the bifurcations and the stability of the periodic solutions are derived using the normal form method and the center manifold theory. Then the sufficient conditions for the system to have multiple periodic solutions when the delay is far away from the critical values of Hopf bifurcations are obtained by using the Wu's global Hopf bifurcation theory and the Bendixson's criterion. Especially, a synchronized scheme is used during the analysis to reduce the dimension of the system. Finally, example numerical simulations are given to support the theoretical analysis.
    Mathematics Subject Classification: Primary: 34C23; Secondary: 34C25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons, Proc. Natl. Acad. Sci. USA, 81 (1984), 3088-3092.doi: 10.1073/pnas.81.10.3088.

    [2]

    Q. S. Lu, Z. Q. Yang, L. X. Duan, H. G. Gu and W. Ren, Dynamics and transitions of firing patterns in deterministic and stochastic neuronal systems, Chaos, Solitons & Fractals, 40 (2009), 377-397.doi: 10.1016/j.chaos.2007.08.040.

    [3]

    J. Xu, K. W. Chung and C. L. Chan, An efficient method for studying weak resonant double Hopf bifurcation in nonlinear systems with delayed feedbacks, SIAM J. Applied Dynamical Systems, 6 (2007), 29-60.doi: 10.1137/040614207.

    [4]

    H. Kitajima and H. Kawakami, Bifurcations in synaptically coupled neurons with external impulsive forces, IEIC Technical Report, 183 (2003), 33-36.

    [5]

    B. Nikola and T. Dragana, Dynamics of Fitzugh-Nagumo excitable systems with delayed coupling, Phys. Rev. E, 67 (2003), 066222.doi: 10.1103/PhysRevE.67.066222.

    [6]

    B. Nikola, I. Grozdanovi and N. Vasovi, Type I vs. type II excitable systems with delayed coupling, Chaos, Solitons & Fractals, 4 (2005), 1221-1233.

    [7]

    Q. Y. Wang, Q. S. Lu and G. R. Chen, Bifurcation and synchronization of synaptically coupled FHN models with time delay, Chaos, Solitons & Fractals, 39 (2009), 918-925.doi: 10.1016/j.chaos.2007.01.061.

    [8]

    J. J. Wei and M. Y. Li, Global existence of periodic solutions in a tri-neuron network model with delays, Physica D, 198 (2004), 106-119.doi: 10.1016/j.physd.2004.08.023.

    [9]

    C. J. Sun, M. A. Han and X. M. Pang, Global Hopf bifurcation analysis on a BAM neural network with delays, Physics Letters A, 360 (2007), 689-695.doi: 10.1016/j.physleta.2006.08.078.

    [10]

    X. P. Yan, Hopf bifurcation and stability for a delayed tri-neuron network model, J. Comp. Appl. Math., 196 (2006), 579-595.doi: 10.1016/j.cam.2005.10.012.

    [11]

    B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, "Theory and Application of Hopf Bifurcation," Cambridge University Press, Cambridge, 1981.

    [12]

    J. Wu, Symmetric functional differential equations and neural networks with memory, Trans. Amer. Math. Soc., 350 (1998), 4799-4838.doi: 10.1090/S0002-9947-98-02083-2.

    [13]

    M. Y. Li and J. Muldowney, On Bendixson's criterion, J. Differential Equations, 106 (1994), 27-39.doi: 10.1006/jdeq.1993.1097.

    [14]

    R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1 (1961), 445-466.doi: 10.1016/S0006-3495(61)86902-6.

    [15]

    J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. IRE, 50 (1962), 2061-2070.

    [16]

    Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics," Academic Press, INC, 1993.

    [17]

    J. Hale, "Theory of Functional Differential Equations," Springer, New York, 1977.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(120) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return